Sports Injury Forecasting and Complexity: A Synergetic Approach.

Sergio T Fonseca, Thales R Souza, Evert Verhagen, Richard van Emmerik, Natalia F N Bittencourt, Luciana D M Mendonça, André G P Andrade, Renan A Resende, Juliana M Ocarino
Author Information
  1. Sergio T Fonseca: Graduate Program in Rehabilitation Sciences, Physical Therapy Department, and Centro de Treinamento Esportivo, Universidade Federal de Minas Gerais, 6627, Pampulha, 31270-901, Belo Horizonte, MG, Brazil. sfonseca@ufmg.br. ORCID
  2. Thales R Souza: Graduate Program in Rehabilitation Sciences, Physical Therapy Department, and Centro de Treinamento Esportivo, Universidade Federal de Minas Gerais, 6627, Pampulha, 31270-901, Belo Horizonte, MG, Brazil.
  3. Evert Verhagen: Amsterdam Collaboration on Health & Safety in Sports, Department of Public and Occupational Health, Amsterdam Movement Sciences, Amsterdam UMC, Amsterdam, Netherlands.
  4. Richard van Emmerik: Motor Control Laboratory, Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
  5. Natalia F N Bittencourt: Uni-BH University, Belo Horizonte, MG, Brazil.
  6. Luciana D M Mendonça: Physical Therapy Department, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil.
  7. André G P Andrade: Graduate Program in Sports Sciences, Sports Department, and Centro de Treinamento Esportivo, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
  8. Renan A Resende: Graduate Program in Rehabilitation Sciences, Physical Therapy Department, and Centro de Treinamento Esportivo, Universidade Federal de Minas Gerais, 6627, Pampulha, 31270-901, Belo Horizonte, MG, Brazil.
  9. Juliana M Ocarino: Graduate Program in Rehabilitation Sciences, Physical Therapy Department, and Centro de Treinamento Esportivo, Universidade Federal de Minas Gerais, 6627, Pampulha, 31270-901, Belo Horizonte, MG, Brazil.

Abstract

The understanding that sports injury is the result of the interaction among many factors and that specific profiles could increase the risk of the occurrence of a given injury was a significant step in establishing programs for injury prevention. However, injury forecasting is far from being attained. To be able to estimate future states of a complex system (forecasting), it is necessary to understand its nature and comply with the methods usually used to analyze such a system. In this sense, sports injury forecasting must implement the concepts and tools used to study the behavior of self-organizing systems, since it is by self-organizing that systems (i.e., athletes) evolve and adapt (or not) to a constantly changing environment. Instead of concentrating on the identification of factors related to the injury occurrence (i.e., risk factors), a complex systems approach looks for the high-order variables (order parameters) that describe the macroscopic dynamic behavior of the athlete. The time evolution of this order parameter informs on the state of the athlete and may warn about upcoming events, such as injury. In this article, we describe the fundamental concepts related to complexity based on physical principles of self-organization and the consequence of accepting sports injury as a complex phenomenon. In the end, we will present the four steps necessary to formulate a synergetics approach based on self-organization and phase transition to sports injuries. Future studies based on this experimental paradigm may help sports professionals to forecast sports injuries occurrence.

References

  1. López-Felip MA, Davis TJ, Frank TD, Dixon JA. A cluster phase analysis for collective behavior in team sports. Hum Mov Sci. 2018;59:96–111. [PMID: 29627663]
  2. Ramos J, Lopes RJ, Araújo D. What’s next in complex networks? Capturing the concept of attacking play in invasive team sports. Sports Med. 2018;48:17–28. [PMID: 28918464]
  3. Araújo D, Davids K, Hristovski R. The ecological dynamics of decision making in sport. Psych Sport Exerc. 2006;7(6):653–76.
  4. Frank TD, Michelbrink M, Beckmann H, Schöllhorn WI. A quantitative dynamical systems approach to differential learning: self-organization principle and order parameter equations. Biol Cybern. 2007;98(1):19–31. [PMID: 18026746]
  5. Den Hartigh RJR, Marmelat V, Cox RFA. Multiscale coordination between athletes—complexity matching in ergometer rowing. Hum Mov Sci. 2018;57:434–41.
  6. Fonseca S, Milho J, Travassos B, Araújo D. Spatial dynamics of team sports exposed by Voronoi diagrams. Hum Mov Sci. 2012;31(6):1652–9. [PMID: 22770973]
  7. Bekker S. Shuffle methodological deck chairs or abandon theoretical ship? The complexity turn in injury prevention. Inj Prev. 2019;25(2):80–2. [PMID: 30446600]
  8. Bekker S, Clark AM. Bringing complexity to sports injury prevention research: from simplification to explanation. Br J Sports Med. 2016;50(24):1489–90. [PMID: 27465698]
  9. Bittencourt NFN, Meeuwisse WH, Mendonça LD, et al. Complex systems approach for sports injuries: moving from risk factor identification to injury pattern recognition—narrative review and new concept. Br J Sports Med. 2016;50:1309–14. [PMID: 27445362]
  10. Bolling C, van Mechelen W, Pasman HR, Verhagen E. Context matters: revisiting the first step of the “sequence of prevention” of sports injuries. Sports Med. 2018;48(10):2227–34. [PMID: 29956077]
  11. Hulme A, Finch CF. From monocausality to system thinking: a complementary and alternative conceptual approach for better understanding the development and prevention of sports injury. Inj Epidemiol. 2015;2:31. [PMID: 26691678]
  12. Hulme A, Mclean S, Salmon PM, et al. Computational methods to model complex systems in sports injury research: agent-based modeling (ABM) and systems dynamics (SD) modelling. Br J Sports Med. 2018;53(24):1507–10. [PMID: 30448782]
  13. Hulme A, Thompson J, Nielsen RO, Read G, Salmon P. Towards a complex systems approach in sports injury research: Simulating running-related injury development with Agent-Based Modelling. Br J Sports Med. 2019;53:560–9. https://doi.org/10.1136/bjsports-2017-098871 . [DOI: 10.1136/bjsports-2017-098871]
  14. Pol R, Hristovski R, Medina D, Balague N. From microscopic to macroscopic sports injuries. Applying the complex dynamic systems approach to sports medicine: a narrative review. Br J Sports Med. 2019;53(19):1214–20. [PMID: 29674346]
  15. Tee JC, McLaren SJ, Jones B. Sports injury prevention is complex: we need to invest in better processes, not singular solutions. Sports Med. 2019. https://doi.org/10.1007/s40279-019-01232-4 . [DOI: 10.1007/s40279-019-01232-4]
  16. Kakavas G, Malliaropoulos N, Pruna R, Maffulli N. Artificial intelligence. A tool for sports trauma prediction. Injury. 2019. https://doi.org/10.1016/j.injury.2019.08.033 . [DOI: 10.1016/j.injury.2019.08.033]
  17. Stern BD, Hegedus EJ, Lai YC. Injury prediction as a non-linear system. Phys Therapy Sport. 2020;41:43–8.
  18. Yates FE. Homeokinetics/Homeodynamics: a physical heuristic for life and complexity. Ecol Psychol. 2008;20(2):148–79.
  19. Prigogine I, Nicolis G. Self-organization in non-equilibrium systems. New York: Wiley; 1977.
  20. Iberall AS. The physics, chemical physics, and biological physics of the origin of life on earth. Ecol Psychol. 2001;13(4):315–27. https://doi.org/10.1207/S15326969ECO1304_03 . [DOI: 10.1207/S15326969ECO1304_03]
  21. Haken H. Synergetics. Phys A. 1984;127(1–3):26–36.
  22. Scheffer M, Carpenter SR, Lenton TM, et al. Anticipating critical transitions. Science. 2012;338(6105):344–8. [PMID: 23087241]
  23. Scheffer M, Bascompte J, Brock WA, et al. Early-warning signals for critical transitions. Nature. 2009;461(7260):53–9. [PMID: 19727193]
  24. Holland JH. Hidden order: how adaptation builds complexity from chaos. Redwood City: Addison-Wesley Longman Publishing Company; 1995. ISBN 0-201-40793-0.
  25. Salmon PM, McLean S. Complexity in the beautiful game: implications for football research and practice. Sci Med Football. 2020;4(2):162–7. https://doi.org/10.1080/24733938.2019.1699247 . [DOI: 10.1080/24733938.2019.1699247]
  26. Rosen R. Life itself. New York: Columbia University Press; 1991.
  27. Rosen R. Essays on life itself. New York: Columbia University Press; 2000. p. 361.
  28. Von Bertalanffy L. General systems theory: foundations, development, applications (Revised Edition ed.). New York: George Braziller Publishing; 1969. p. 296.
  29. Johnson NF. Two’s Company, Three is Complexity. In: Johnson NF (ed) Simply complexity: a clear guide to complexity theory. Reprint Edition; 2009. pp. 1–16.
  30. Kugler PN, Turvey MT. Self-organization, flow fields, and information. Hum Move Sci. 1988;7(2):97–129.
  31. Weaver W. Science and complexity. American scientist. Boston: Springer; 1948. p. 536–44.
  32. Mendiguchia J, Alentorn-Geli E, Brughelli M. Hamstring strain injuries: are we heading in the right direction? Br J Sports Med. 2012;46(2):81–5. [PMID: 21677318]
  33. Balagué N, Pol R, Torrents C, et al. On the relatedness and nestedness of constraints. Sports Med Open. 2019;5:6. https://doi.org/10.1186/s40798-019-0178-z . [DOI: 10.1186/s40798-019-0178-z]
  34. Verschueren J, Tassignon B, De Pauw K, et al. Does acute fatigue negatively affect Intrinsic risk factors of the lower extremity injury risk profile? A systematic and critical review. Sports Med. 2019. https://doi.org/10.1007/s40279-019-01235-1 . [DOI: 10.1007/s40279-019-01235-1]
  35. Abarbanel HDI, Brown R, Sidorowich JJ, Tsimring LS. The analysis of observed chaotic data in physical systems. Rev Mod Phys. 1993;65(4):1331–92.
  36. Heylighen F. Building a science of complexity. In: Fatmi HA, editor. Proceedings of the 1988 annual conference of the Cybernetics Society (London). London: Cybernetics Society, King’s College; 1988. p. 1–22. http://pcp.vub.ac.be/Papers/BuildingComplexity.pdf .
  37. Heylighen F. Complexity and self-organization. In: Bates MJ, Maack MN, editors. Encyclopedia of library and information sciences. Routledge: Taylor & Francis; 2008.
  38. Gollub JP, Langer JS. Pattern formation in nonequilibrium physics. Rev Mod Phys. 1991;71(2):S396–403.
  39. Ottino JM, Khakhar DV. Scaling of granular flow processes: from surface flows to design rules. AIChE J. 2002;48:2157–66.
  40. Haken H. Visions of synergetics. J Franklin Inst Eng Appl Math. 1997;334B(5–6):759–92.
  41. Piggott B, Müller S, Chivers P, Burgin M, Hoyne G. Coach rating combined with small-sided games provides further insight into mental toughness in sport. Front Psychol. 2019;10:1552. [PMID: 31333554]
  42. Haken H. Synergetics an interdisciplinary approach to phenomena of self-organization. Geoforum. 1985;16(2):205–11.
  43. Angeli D, Ferrell JE Jr, Sontag ED. Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc Natl Acad Sci USA. 2004;101(17):1822–7. [PMID: 14766974]
  44. Preatoni E, Hamill J, Harrison AJ, et al. Movement variability and skills monitoring in sports. Sports Biomech. 2013;12(2):69–92. [PMID: 23898682]
  45. Beek PJ, Santvoord AAM. Learning the cascade juggle: a dynamical systems analysis. J Mot Behav. 1992;24(1):85–94. https://doi.org/10.1080/00222895.1992.9941604 . [DOI: 10.1080/00222895.1992.9941604]
  46. Kelso J, Schalz JP, Schöner G. Nonequilibrium phase—transitions in coordinated biological motion—critical fluctuations. Phys Lett A. 1986;118(6):279–84.
  47. Kelso JAS, Schöner G. Self-organization of coordinative movement patterns. Hum Mov Sci. 1981;7(1):27–46.
  48. Kelso J, Scholz JP, Schöner G. Dynamics governs switching among patterns of coordination in biological movement. Phys Lett A. 1988;134(1):8–12.
  49. Friedrich R, Haken H. A short course on synergetics. Nonlinear phenomena in complex system. Berlin: Elsevier Science Publishers B.V.; 1989. p. 48.
  50. Gabbett TJ, Nielsen RO, Bertelsen ML, Bittencourt NFN, Fonseca S, Malone S, et al. In pursuit of the “Unbreakable” Athlete: what is the role of moderating factors and circular causation? Br J Sports Med. 2018;53(7):394–5. [PMID: 30425045]
  51. Haken H, Kelso JAS, Bunz H. A theoretical model of phase transitions in human hand movements. Biol Cybern. 1985;39:139–56.
  52. Chow JY, Davids K, Button C, Rein R, Hristovski R, Koh M. Dynamics of multi-articular coordination in neurobiological systems. Nonlinear Dyn Psychol Life Sci. 2009;13(1):275.
  53. Hristovski R, Davids K, Araújo D. Affordance—controlled bifurcations of action patterns in martial arts. Nonlinear Dyn Psychol Life Sci. 2006;4:409–44.
  54. Bak P, Tang C, Wiesenfeld K. Self-organized criticality—an explanation of 1/F noise. Phys Rev Lett Am Phys Soc. 1987;59(4):381–4.
  55. Camomilla V, Bergamini E, Fantozzi S, et al. Trends supporting the in-field use of wearable inertial sensors for sport performance evaluation: a systematic review. Sensors. 2018;18(3):873.
  56. Li RT, Kling SR, Salata MJ, et al. Wearable performance devices in sports medicine. Sports Health. 2016;8(1):74–8. [PMID: 26733594]
  57. Mendonça LD, Ocarino JM, Bittencourt NFN, Macedo LG, Fonseca ST. Association of hip and foot factors with patellar tendinopathy (Jumper’s Knee) in Athletes. J Orthop Sports Phys Ther. 2018;48(9):676–84. [PMID: 29792104]
  58. Mendonça LD, Verhagen E, Bittencourt NF, Gonçalves GG, Ocarino JM, Fonseca ST. Factors associated with the presence of patellar tendon abnormalities in male athletes. J Sci Med Sport. 2016;19(5):389–94. [PMID: 26087883]
  59. Dong J. The role of heart rate variability in sports physiology (Review). Exp Ther Med. 2016;11(5):1531–6. [PMID: 27168768]
  60. Amano M, Kanda T, Ue H, Moritani T. Exercise training and autonomic nervous system activity in obese individuals. Med Sci Sports Exerc. 2001;33:1287–91. [PMID: 11474328]
  61. Plews DJ, Laursen PB, Kilding AE, Buchheit M. Heart rate variability in elite triathletes, is variation in variability the key to effective training? A case comparison. Eur J Appl Physiol. 2012;112:3729–41. [PMID: 22367011]
  62. Haag K, Hiller R, Peyk P, Abnorm J, et al. A longitudinal examination of heart-rate and heart rate variability as risk markers for child posttraumatic stress symptoms in an acute injury sample. J Abnorm Child Psychol. 2019;47(11):1811–20. [PMID: 31073881]
  63. Kiviniemi AM, Hautala AJ, Kinnunen H, Tulppo MP. Endurance training guided individually by daily heart rate variability measurements. Eur J Appl Physiol. 2007;101:743–51. [PMID: 17849143]
  64. Luo H, Wei J, Yasin Y, et al. Stress determined through heart rate variability predicts immune function. NeuroImmunoModulation. 2019;13:1–7.
  65. Aubert AE, Seps B, Beckers F. Heart rate variability in athletes. Sports Med. 2003;33:889–919. [PMID: 12974657]
  66. Williams S, Booton T, Watson M, Rowland D, Altini M. Heart rate variability is a moderating factor in the workload-injury relationship of competitive CrossFit (TM) athletes. J Sport Sci Med. 2017;16(4):443–9.
  67. Noble BJ, Robertson RJ. Perceived exertion. Human kinetics. Albany: Champaing; 1996.
  68. de Morree HM, Klein C, Marcora SM. Neurophysiology of perceived effort. Psychophysiology. 2012;49:1242–53. [PMID: 22725828]
  69. Pageaux B, Marcora SM, Rozand V, Lepers R. Mental fatigue induced by prolonged self-regulation does not exacerbate central fatigue during subsequent whole-body endurance exercise. Front Hum Neurosci. 2015;9(755):67. [PMID: 25762914]
  70. Impellizzeri FM, Rampinini E, Coutts AJ, Sassi A, Marcora SM. Use of RPE-based training load in soccer. Med Scie Sports Exer. 2004;36(6):1042–7.
  71. Aragonés D, Balagué N, Hristovski R, Pol R, Tenenbaum G. Fluctuating dynamics of perceived exertion in constant power exercise. Psychol Sport Exerc. 2013;14:796–803.
  72. Balagué N, Hristovski R, García S, Aguirre C, Vázquez P, Razon S, Tenenbaum G. Dynamics of perceived exertion in constant power cycling: time and workload-dependent thresholds. Res Q Sport Exerc. 2015;86:371–8.
  73. Montull Ll, Vázquez P, Hristovski R, Balagué N. Hysteresis of psychobiological variables during exercise. Psychol Sport Exerc. 2020;48:101647.
  74. Watson A, Brickson S, Brooks A, Dunn W. Subjective well-being and training load predict in-season injury and illness risk in female youth soccer players. Br J Sports Med. 2017;51(3):194–9. [PMID: 27919919]
  75. Fonseca S, Ocarino JM, Silva PLP, Aquino CF. Integration of stresses and their relationship to the kinetic chain. In: Magee DJ (ed) Scientific foundations and principles in musculoskeletal rehabilitation. First; 2007. pp. 476–86.
  76. Diedrich FJ, Warren WH Jr. Why change gaits? Dynamics of the walk-run transition. J Exp Psychol Hum Percept Perform. 1995;21(1):183–202. [PMID: 7707029]
  77. Van Emmerik RE, Wagenaar RC, Winogrodzka A, Wolters EC. Identification of axial rigidity during locomotion in Parkinson disease. Arch Phys Med Rehabil. 1999;80(2):186–91. [PMID: 10025495]
  78. Hamill J, Van Emmerik REA, Heiderscheit BC, Li L. A dynamical systems approach to lower extremity running injuries. Clin Biomech. 1999;14(5):297–308.
  79. Seay JF, Van Emmerik REA, Hamill J. Low back pain status affects pelvis-trunk coordination and variability during walking and running. Clin Biomech. 2011;26(6):572–8.
  80. Tang L, Lv H, Yang F, Yu L. Complexity testing techniques for time series data: a comprehensive literature review. Chaos Solitons Fract. 2015;81(Part A):117–35.
  81. Ducharme SW, Liddy JJ, Haddad JM, et al. Association between stride time fractality and gait adaptability during unperturbed and asymmetric walking. Hum mov science. 2018;58:248–59.
  82. Van Emmerik REA, Ducharme SW, Amado AC, Hamill J. Comparing dynamical systems concepts and techniques for biomechanical analysis. J Sport Health Sci. 2016;5(1):3–13. [PMID: 30356938]
  83. Vieira MF, Rodrigues FB, de Sáe-Souza GS, et al. Linear and nonlinear gait features in older adults walking on inclined surfaces at different speeds. Ann Biomed Eng. 2017;45(6):1560–71. [PMID: 28293751]
  84. Vieira MF, Rodrigues FB, de Sáe-Souza GS, et al. Gait stability, variability and complexity on inclined surfaces. J Biomech. 2017;54:73–9. [PMID: 28233553]
  85. Vázquez P, Hristovski R, Balagué N. The path to exhaustion: time-variability properties of coordinative variables during continuous exercise. Front Physiol. 2016;7:37. [PMID: 26913006]
  86. Wen H, Ciamarra MP, Cheong SA. How one might miss early warning signals of critical transitions in time series data: a systematic study of two major currency pairs. PLoS One. 2018;13(3):e0191439. [PMID: 29538373]
  87. Ballester J, Lowe R, Diggle PJ, Rodó X. Seasonal forecasting and health impact models: challenges and opportunities. Ann N Y Acad Sci. 2016;1382(1):8–20. [PMID: 27428726]
  88. Schroeder M. Fractals, chaos, power laws: minutes from an infinite paradise. New York: Freeman; 1991. p. 448.
  89. McSharry P, Smith L, Tarassenko L. Prediction of epileptic seizures: are nonlinear methods relevant? Nat Med. 2003;2003:241–2.
  90. Dakos V, Carpenter SR, van Nes EH, Scheffer M. Resilience indicators: prospects and limitations for early warnings of regime shifts. Phil Trans R Soc B. 2015;370(1659):263–71.
  91. Battiston S, Farmer JD, Flache A, et al. Complexity theory and financial regulation. Science. 2016;351(6275):818. [PMID: 26912882]
  92. Battiston S, Glattfelder JB, Garlaschelli D, et al. The structure of financial networks. In: Estrada E, Fox M, Higham DJ, Oppo G-L, editors. Network science: complexity in nature and technology. London: Springer; 2010. p. 131–63.
  93. Buldú JM, Busquets J, Echegoyen I, et al. Defining a historic football team: Using Network Science to analyze Guardiola’s F.C. Barcelona. Sci Rep. 2019;9:13602. https://doi.org/10.1038/s41598-019-49969-2 . [DOI: 10.1038/s41598-019-49969-2]
  94. Duch J, Waitzman JS, Amaral LA. Quantifying the performance of individual players in a team activity. PLoS ONE. 2010;5(6):e10937. https://doi.org/10.1371/journal.pone.0010937 . [DOI: 10.1371/journal.pone.0010937]
  95. Bardoscia M, Battiston S, Caccioli F, Caldarelli G. Pathways towards instability in financial networks. Nature Commun. 2017;8(1):14416–7.
  96. Gabaix X, Gopikrishnan P, Plerou V, Stanley HE. A theory of power-law distributions in financial market fluctuations. Nature. 2003;423(6937):267–70. [PMID: 12748636]
  97. Lacasa L, Luque B, Ballesteros F, et al. From time series to complex networks: the visibility graph. Proc Nati Acad Sci. 2008;105(13):4972–5.
  98. Zhang J, Small M. Complex network from pseudoperiodic time series: topology versus dynamics. Phys Rev Lett. 2006;96(23):238701. [PMID: 16803415]
  99. Wu Z, Huang NE, Long SR, Peng CK. On the trend, detrending, and variability of nonlinear and nonstationary time series. Proc Natl Acad Sci USA. 2007;104(38):14889–94. [PMID: 17846430]

Grants

  1. Code 001/Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  2. 306477/2019-0/Conselho Nacional de Desenvolvimento Científico e Tecnológico
  3. 00364-18/Fundação de Amparo à Pesquisa do Estado de Minas Gerais

MeSH Term

Athletic Injuries
Forecasting
Humans
Risk Assessment

Word Cloud

Created with Highcharts 10.0.0injurysportsfactorsoccurrenceforecastingcomplexsystemsbasedrisksystemnecessaryusedconceptsbehaviorself-organizingierelatedapproachorderdescribeathletemayself-organizationinjuriesunderstandingresultinteractionamongmanyspecificprofilesincreasegivensignificantstepestablishingprogramspreventionHoweverfarattainedableestimatefuturestatesunderstandnaturecomplymethodsusuallyanalyzesensemustimplementtoolsstudysinceathletesevolveadaptconstantlychangingenvironmentInsteadconcentratingidentificationlookshigh-ordervariablesparametersmacroscopicdynamictimeevolutionparameterinformsstatewarnupcomingeventsarticlefundamentalcomplexityphysicalprinciplesconsequenceacceptingphenomenonendwillpresentfourstepsformulatesynergeticsphasetransitionFuturestudiesexperimentalparadigmhelpprofessionalsforecastSportsInjuryForecastingComplexity:SynergeticApproach

Similar Articles

Cited By