Altered functional connectivity during speech perception in congenital amusia.

Kyle Jasmin, Frederic Dick, Lauren Stewart, Adam Taylor Tierney
Author Information
  1. Kyle Jasmin: Department of Psychological Sciences, Birkbeck University of London, London, United Kingdom. ORCID
  2. Frederic Dick: Department of Psychological Sciences, Birkbeck University of London, London, United Kingdom. ORCID
  3. Lauren Stewart: Department of Psychology, Goldsmiths University of London, London, United Kingdom.
  4. Adam Taylor Tierney: Department of Psychological Sciences, Birkbeck University of London, London, United Kingdom. ORCID

Abstract

Individuals with congenital amusia have a lifelong history of unreliable pitch processing. Accordingly, they downweight pitch cues during speech perception and instead rely on other dimensions such as duration. We investigated the neural basis for this strategy. During fMRI, individuals with amusia (N = 15) and controls (N = 15) read sentences where a comma indicated a grammatical phrase boundary. They then heard two sentences spoken that differed only in pitch and/or duration cues and selected the best match for the written sentence. Prominent reductions in functional connectivity were detected in the amusia group between left prefrontal language-related regions and right hemisphere pitch-related regions, which reflected the between-group differences in cue weights in the same groups of listeners. Connectivity differences between these regions were not present during a control task. Our results indicate that the reliability of perceptual dimensions is linked with functional connectivity between frontal and perceptual regions and suggest a compensatory mechanism.

Keywords

References

  1. Brain Cogn. 2009 Dec;71(3):259-64 [PMID: 19762140]
  2. Adv Cogn Psychol. 2010 Apr 26;6:15-22 [PMID: 20689638]
  3. Neuropsychologia. 2019 Nov;134:107234 [PMID: 31647961]
  4. J Exp Psychol Gen. 2020 May;149(5):914-934 [PMID: 31589067]
  5. Bioessays. 2014 Oct;36(10):960-7 [PMID: 25088374]
  6. Ann N Y Acad Sci. 2003 Nov;999:58-75 [PMID: 14681118]
  7. Comput Biomed Res. 1996 Jun;29(3):162-73 [PMID: 8812068]
  8. Front Psychol. 2015 Sep 08;6:1340 [PMID: 26441718]
  9. Front Hum Neurosci. 2018 Jan 30;12:9 [PMID: 29441004]
  10. Hear Res. 2014 Feb;308:98-108 [PMID: 24055761]
  11. Hum Brain Mapp. 2019 Feb 15;40(3):855-867 [PMID: 30381866]
  12. Brain. 2006 Oct;129(Pt 10):2562-70 [PMID: 16931534]
  13. Hum Brain Mapp. 2010 Jun;31(6):852-62 [PMID: 20496376]
  14. Neuroimage Clin. 2014 Dec 09;7:288-96 [PMID: 25610792]
  15. J Psycholinguist Res. 2010 Aug;39(4):323-44 [PMID: 20033291]
  16. Schizophr Res. 2018 Jul;197:219-225 [PMID: 29310911]
  17. J Neurosci. 2016 Mar 9;36(10):2986-94 [PMID: 26961952]
  18. Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):10038-42 [PMID: 12909719]
  19. Neuron. 2002 Jan 17;33(2):185-91 [PMID: 11804567]
  20. Front Hum Neurosci. 2015 Jan 06;8:1029 [PMID: 25646077]
  21. Hum Brain Mapp. 1999;7(3):213-23 [PMID: 10194620]
  22. Brain Lang. 2012 Dec;123(3):234-9 [PMID: 23117156]
  23. Neuroimage. 2010 Feb 15;49(4):3132-48 [PMID: 19909818]
  24. Trends Cogn Sci. 2016 Nov;20(11):857-867 [PMID: 27692992]
  25. Front Psychol. 2015 Jan 21;6:9 [PMID: 25653637]
  26. Elife. 2020 Aug 07;9: [PMID: 32762842]
  27. J Cogn Neurosci. 2015 Aug;27(8):1503-12 [PMID: 25761004]
  28. Brain Res. 2016 Jun 1;1640(Pt B):251-63 [PMID: 26505915]
  29. J Neurosci. 2011 Feb 2;31(5):1704-14 [PMID: 21289179]
  30. J Neurosci. 2009 Aug 19;29(33):10215-20 [PMID: 19692596]
  31. Brain Cogn. 2013 Apr;81(3):337-44 [PMID: 23434917]
  32. Cortex. 2018 Jun;103:164-178 [PMID: 29655041]
  33. Psychol Med. 2016 May;46(7):1509-22 [PMID: 26924633]
  34. Brain. 2019 Mar 1;142(3):808-822 [PMID: 30698656]
  35. J Neurophysiol. 2016 Jul 1;116(1):88-97 [PMID: 27009161]
  36. Front Syst Neurosci. 2010 Jun 23;4:25 [PMID: 20631844]
  37. J Neurosci. 2015 Mar 4;35(9):3815-24 [PMID: 25740512]
  38. Neuroimage. 2013 Jun;73:176-90 [PMID: 23376789]
  39. Brain. 2009 May;132(Pt 5):1277-86 [PMID: 19336462]
  40. PLoS One. 2012;7(5):e36860 [PMID: 22606299]
  41. Cereb Cortex. 2011 Feb;21(2):292-9 [PMID: 20494966]
  42. Ann N Y Acad Sci. 2009 Jul;1169:191-4 [PMID: 19673779]
  43. Brain. 2012 Sep;135(Pt 9):2711-25 [PMID: 22791801]
  44. Cortex. 2016 Jan;74:134-48 [PMID: 26673946]
  45. Brain. 2013 May;136(Pt 5):1639-61 [PMID: 23616587]
  46. Curr Biol. 2017 Sep 11;27(17):2684-2691.e7 [PMID: 28844645]
  47. Brain. 2016 Jan;139(Pt 1):276-91 [PMID: 26493637]
  48. eNeuro. 2018 Mar 8;5(1): [PMID: 29527567]
  49. Neuropsychologia. 2015 Jan;66:111-8 [PMID: 25445781]
  50. Brain. 2010 Jun;133(Pt 6):1682-93 [PMID: 20418275]
  51. Neuroimage. 2004 Oct;23(2):752-63 [PMID: 15488425]
  52. J Acoust Soc Am. 2008 Jun;123(6):4498-513 [PMID: 18537399]
  53. Neuroimage. 2012 Feb 1;59(3):2142-54 [PMID: 22019881]
  54. J Acoust Soc Am. 1978 Dec;64(6):1582-92 [PMID: 739094]
  55. Neuroimage. 2014 Jan 1;84:1042-52 [PMID: 24055504]
  56. Wellcome Open Res. 2020 Jan 8;5:4 [PMID: 35282675]
  57. Neuroimage. 2012 Aug 15;62(2):774-81 [PMID: 22248573]
  58. Atten Percept Psychophys. 2010 Jul;72(5):1218-27 [PMID: 20601702]
  59. Neuroimage. 2011 Jul 1;57(1):293-300 [PMID: 21315158]

Grants

  1. /Wellcome Trust

MeSH Term

Adult
Aged
Auditory Perceptual Disorders
Female
Humans
Magnetic Resonance Imaging
Middle Aged
Speech Perception
United Kingdom

Word Cloud

Created with Highcharts 10.0.0amusiafunctionalconnectivityregionspitchspeechperceptioncongenitalcuesdimensionsdurationfMRIN=15sentencesdifferencesperceptualIndividualslifelonghistoryunreliableprocessingAccordinglydownweightinsteadrelyinvestigatedneuralbasisstrategyindividualscontrolsreadcommaindicatedgrammaticalphraseboundaryheardtwospokendifferedand/orselectedbestmatchwrittensentenceProminentreductionsdetectedgroupleftprefrontallanguage-relatedrighthemispherepitch-relatedreflectedbetween-groupcueweightsgroupslistenersConnectivitypresentcontroltaskresultsindicatereliabilitylinkedfrontalsuggestcompensatorymechanismAlteredauditoryhumanneuroscience

Similar Articles

Cited By (4)