Innate immune evasion by picornaviruses.

Xiangle Zhang, Max Paget, Congcong Wang, Zixiang Zhu, Haixue Zheng
Author Information
  1. Xiangle Zhang: State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China.
  2. Max Paget: Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA, U.S.A.
  3. Congcong Wang: State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China.
  4. Zixiang Zhu: State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China.
  5. Haixue Zheng: State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China.

Abstract

The family Picornaviridae comprises a large number of viruses that cause disease in broad spectrum of hosts, which have posed serious public health concerns worldwide and led to significant economic burden. A comprehensive understanding of the virus-host interactions during picornavirus infections will help to prevent and cure these diseases. Upon picornavirus infection, host pathogen recognition receptors (PRRs) sense viral RNA to activate host innate immune responses. The activated PRRs initiate signal transduction through a series of adaptor proteins, which leads to activation of several kinases and transcription factors, and contributes to the consequent expression of interferons (IFNs), IFN-inducible antiviral genes, as well as various inflammatory cytokines and chemokines. In contrast, to maintain viral replication and spread, picornaviruses have evolved several elegant strategies to block innate immune signaling and hinder host antiviral response. In this review, we will summarize the recent progress of how the members of family Picornaviridae counteract host immune response through evasion of PRRs detection, blocking activation of adaptor molecules and kinases, disrupting transcription factors, as well as counteraction of antiviral restriction factors. Such knowledge of immune evasion will help us better understand the pathogenesis of picornaviruses, and provide insights into developing antiviral strategies and improvement of vaccines.

Keywords

References

  1. Stanway, G., Structure, function and evolution of picornaviruses. J. Gen. Virol. 1990. 71 (Pt 11): 2483-2501.
  2. Knowles, N., Hovi, T., Hyypiä, T., King, A., Lindberg, A. M., Pallansch, M., Palmenberg, A. et al., Picornaviridae. In King, A. M. Q., Adams, M. J., Carstens, E. B. and Lefkowitz, E. J. (Eds.), Virus taxonomy: classification and nomenclature of viruses, ninth report of the international committee on taxonomy of viruses. Elsevier Academic Press, San Diego, 2012, pp. 855-880.
  3. Agol, V. I., Picornavirus genome: an overview Molecular Biology of Picornavirus. American Society of Microbiology 2002, pp 127-148.
  4. Ullmer, W. and Semler, B. L., Diverse strategies used by picornaviruses to escape host RNA decay pathways. Viruses 2016. 8: 335.
  5. Iwasaki, A. and Medzhitov, R., Control of adaptive immunity by the innate immune system. Nat. Immunol. 2015. 16: 343-353.
  6. Paul, W. E., Bridging innate and adaptive immunity. Cell 2011. 147: 1212-1215.
  7. Chakraborty, S., Veeregowda, B., Deb, R. and Naik, B. C., An overview of the immune evasion strategies adopted by different viruses with special reference to classical swine fever virus. Viral Replication 2013: 83.
  8. Dotzauer, A. and Kraemer, L., Innate and adaptive immune responses against picornaviruses and their counteractions: an overview. World Journal of Virology 2012. 1: 91.
  9. Loo, Y.-M. and Gale Jr, M., Immune signaling by RIG-I-like receptors. Immunity 2011. 34: 680-692.
  10. Chow, K. T., Gale, M., Jr and Loo, Y.-M., RIG-I and other RNA sensors in antiviral immunity. Annu. Rev. Immunol. 2018. 36: 667-694.
  11. Pulido, M. R., Sánchez-Aparicio, M. T., Martínez-Salas, E., García-Sastre, A., Sobrino, F. and Sáiz, M., Innate immune sensor LGP2 is cleaved by the Leader protease of foot-and-mouth disease virus. PLoS Pathog. 2018. 14: e1007135.
  12. Zhu, Z., Li, C., Du, X., Wang, G., Cao, W., Yang, F., Feng, H., et al., Foot-and-mouth disease virus infection inhibits LGP2 protein expression to exaggerate inflammatory response and promote viral replication. Cell Death Disease 2017. 8: e2747.
  13. Kuo, R.-L., Kao, L.-T., Lin, S.-J., Wang, R. Y.-L. and Shih, S.-R., MDA5 plays a crucial role in enterovirus 71 RNA-mediated IRF3 activation. PLoS One 2013. 8.
  14. Barral, P. M., Morrison, J. M., Drahos, J., Gupta, P., Sarkar, D., Fisher, P. B. and Racaniello, V. R., MDA-5 is cleaved in poliovirus-infected cells. J. Virol. 2007. 81: 3677-3684.
  15. Du, X., Zhang, Y., Zou, J., Yuan, Z. and Yi, Z., Replicase-mediated shielding of the poliovirus replicative double-stranded RNA to avoid recognition by MDA5. J. Gen. Virol. 2018. 99: 1199-1209.
  16. Rui, Y., Su, J., Wang, H., Chang, J., Wang, S., Zheng, W., Cai, Y., et al., Disruption of MDA5-mediated innate immune responses by the 3C proteins of coxsackievirus A16, coxsackievirus A6, and enterovirus D68. J. Virol. 2017. 91: e00546-00517.
  17. Feng, Q., Langereis, M. A., Lork, M., Nguyen, M., Hato, S. V., Lanke, K., Emdad, L., et al., Enterovirus 2Apro targets MDA5 and MAVS in infected cells. J. Virol. 2014. 88: 3369-3378.
  18. Li, L., Fan, H., Song, Z., Liu, X., Bai, J. and Jiang, P., Encephalomyocarditis virus 2C protein antagonizes interferon-β signaling pathway through interaction with MDA5. Antiviral Res. 2019. 161: 70-84.
  19. Li, M., Xin, T., Gao, X., Wu, J., Wang, X., Fang, L., Sui, X., et al., Foot-and-mouth disease virus non-structural protein 2B negatively regulates the RLR-mediated IFN-β induction. Biochem. Biophys. Res. Commun. 2018. 504: 238-244.
  20. Barral, P. M., Sarkar, D., Fisher, P. B. and Racaniello, V. R., RIG-I is cleaved during picornavirus infection. Virology 2009. 391: 171-176.
  21. Papon, L., Oteiza, A., Imaizumi, T., Kato, H., Brocchi, E., Lawson, T. G., Akira, S., et al., The viral RNA recognition sensor RIG-I is degraded during encephalomyocarditis virus (EMCV) infection. Virology 2009. 393: 311-318.
  22. Feng, Q., Langereis, M. A. and van Kuppeveld, F. J. M., Induction and suppression of innate antiviral responses by picornaviruses. Cytokine Growth Factor Rev. 2014. 25: 577-585.
  23. Lei, X., Liu, X., Ma, Y., Sun, Z., Yang, Y., Jin, Q., He, B., et al., The 3C protein of enterovirus 71 inhibits retinoid acid-inducible gene I-mediated interferon regulatory factor 3 activation and type I interferon responses. J. Virol. 2010. 84: 8051-8061.
  24. Chen, N., Li, X., Li, P., Pan, Z., Ding, Y., Zou, D., Zheng, L., et al., Enterovirus 71 inhibits cellular type I interferon signaling by inhibiting host RIG-I ubiquitination. Microbial Pathogenesis 2016. 100: 84-89.
  25. Wen, W., Yin, M., Zhang, H., Liu, T., Chen, H., Qian, P., Hu, J., et al., Seneca Valley virus 2C and 3C inhibit type I interferon production by inducing the degradation of RIG-I. Virology 2019. 535: 122-129.
  26. Zhu, Z., Wang, G., Yang, F., Cao, W., Mao, R., Du, X., Zhang, X., et al., Foot-and-mouth disease virus viroporin 2B antagonizes RIG-I-mediated antiviral effects by inhibition of its protein expression. J. Virol. 2016. 90: 11106-11121.
  27. Li, D., Yang, W., Yang, F., Liu, H., Zhu, Z., Lian, K., Lei, C., et al., The VP3 structural protein of foot-and-mouth disease virus inhibits the IFN-β signaling pathway. FASEB J. 2016. 30: 1757-1766.
  28. Bruns, A. M. and Horvath, C. M., LGP2 synergy with MDA5 in RLR-mediated RNA recognition and antiviral signaling. Cytokine 2015. 74: 198-206.
  29. Zhu, Z., Wang, G., Yang, F., Cao, W., Mao, R., Du, X., Zhang, X., et al., Foot-and-mouth disease virus viroporin 2B antagonizes RIG-I mediated antiviral effects by inhibition of its protein expression. J. Virol. 2016: JVI. 01310-01316.
  30. Kawai, T. and Akira, S., The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 2010. 11: 373-384.
  31. Chen, K.-R., Yu, C.-K., Kung, S.-H., Chen, S.-H., Chang, C.-F., Ho, T.-C., Lee, Y.-P., et al., Toll-like receptor 3 is involved in detection of enterovirus A71 infection and targeted by viral 2A protease. Viruses 2018. 10: 689.
  32. Fei, Y., Chaulagain, A., Wang, T., Chen, Y., Liu, J., Yi, M., Wang, Y., et al., MiR-146a down-regulates inflammatory response by targeting TLR3 and TRAF6 in Coxsackievirus B infection. RNA 2020. 26: 91-100.
  33. Richer, M. J., Lavallee, D. J., Shanina, I. and Horwitz, M. S., Toll-like receptor 3 signaling on macrophages is required for survival following coxsackievirus B4 infection. PLoS One 2009. 4.
  34. Wang, Q., Nagarkar, D. R., Bowman, E. R., Schneider, D., Gosangi, B., Lei, J., Zhao, Y., et al., Role of double-stranded RNA pattern recognition receptors in rhinovirus-induced airway epithelial cell responses. J. Immunol. 2009. 183: 6989-6997.
  35. Abe, Y., Fujii, K., Nagata, N., Takeuchi, O., Akira, S., Oshiumi, H., Matsumoto, M., et al., The toll-like receptor 3-mediated antiviral response is important for protection against poliovirus infection in poliovirus receptor transgenic mice. J. Virol. 2012. 86: 185-194.
  36. Triantafilou, K., Vakakis, E., Orthopoulos, G., Ahmed, M. A. E., Schumann, C., Lepper, P. M. and Triantafilou, M., TLR8 and TLR7 are involved in the host's immune response to human parechovirus 1. Eur. J. Immunol. 2005. 35: 2416-2423.
  37. Triantafilou, K., Vakakis, E., Richer, E. A., Evans, G. L., Villiers, J. P. and Triantafilou, M., Human rhinovirus recognition in non-immune cells is mediated by Toll-like receptors and MDA-5, which trigger a synergetic pro-inflammatory immune response. Virulence 2011. 2: 22-29.
  38. Järver, P., Dondalska, A., Poux, C., Sandberg, A., Bergenstråhle, J., Sköld, A. E., Dereuddre-Bosquet, N., et al., Single-stranded nucleic acids regulate TLR3/4/7 activation through interference with clathrin-mediated endocytosis. Sci. Rep. 2018. 8: 1-17.
  39. Song, J., Hu, Y. J., Li, J. Q., Zheng, H. W., Wang, J. J., Guo, L., Shi, H., et al., Suppression of the toll-like receptor 7-dependent type I interferon production pathway by autophagy resulting from enterovirus 71 and coxsackievirus A16 infections facilitates their replication. Arch. Virol. 2018. 163: 135-144.
  40. Lannes, N., Python, S. and Summerfield, A., Interplay of foot-and-mouth disease virus, antibodies and plasmacytoid dendritic cells: virus opsonization under non-neutralizing conditions results in enhanced interferon-alpha responses. Veterinary Research 2012. 43: 64.
  41. Solt, L. A. and May, M. J., The IkappaB kinase complex: master regulator of NF-kappaB signaling. Immunol Research 2008. 42: 3-18.
  42. Wang, D., Fang, L., Wei, D., Zhang, H., Luo, R., Chen, H., Li, K., et al., Hepatitis A virus 3C protease cleaves NEMO to impair induction of beta interferon. J. Virol. 2014. 88: 10252-10258.
  43. Yang, Y., Liang, Y., Qu, L., Chen, Z., Yi, M., Li, K. and Lemon, S. M., Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor. Proc. Natl. Acad. Sci. USA 2007. 104: 7253-7258.
  44. Paulmann, D., Magulski, T., Schwarz, R., Heitmann, L., Flehmig, B., Vallbracht, A. and Dotzauer, A., Hepatitis A virus protein 2B suppresses beta interferon (IFN) gene transcription by interfering with IFN regulatory factor 3 activation. J. Gen. Virol. 2008. 89: 1593-1604.
  45. Qu, L., Feng, Z., Yamane, D., Liang, Y., Lanford, R. E., Li, K. and Lemon, S. M., Disruption of TLR3 signaling due to cleavage of TRIF by the hepatitis A virus protease-polymerase processing intermediate, 3CD. PLoS Pathog. 2011. 7.
  46. Mukherjee, A., Morosky, S. A., Delorme-Axford, E., Dybdahl-Sissoko, N., Oberste, M. S., Wang, T. and Coyne, C. B., The coxsackievirus B 3Cpro protease cleaves MAVS and TRIF to attenuate host type I interferon and apoptotic signaling. PLoS Pathog. 2011. 7.
  47. Wang, B., Xi, X., Lei, X., Zhang, X., Cui, S., Wang, J., Jin, Q., et al., Enterovirus 71 protease 2Apro targets MAVS to inhibit anti-viral type I interferon responses. PLoS Pathog. 2013. 9.
  48. Lei, X., Sun, Z., Liu, X., Jin, Q., He, B. and Wang, J., Cleavage of the adaptor protein TRIF by enterovirus 71 3C inhibits antiviral responses mediated by Toll-like receptor 3. J. Virol. 2011. 85: 8811-8818.
  49. Xiang, Z., Li, L., Lei, X., Zhou, H., Zhou, Z., He, B. and Wang, J., Enterovirus 68 3C protease cleaves TRIF to attenuate antiviral responses mediated by Toll-like receptor 3. J. Virol. 2014. 88: 6650-6659.
  50. Lei, X., Han, N., Xiao, X., Jin, Q., He, B. and Wang, J., Enterovirus 71 3C inhibits cytokine expression through cleavage of the TAK1/TAB1/TAB2/TAB3 complex. J. Virol. 2014. 88: 9830-9841.
  51. Xu, C., Peng, Y., Zhang, Q., Xu, X.-P., Kong, X.-M. and Shi, W.-F., USP4 positively regulates RLR-induced NF-κB activation by targeting TRAF6 for K48-linked deubiquitination and inhibits enterovirus 71 replication. Sci. Rep. 2018. 8: 1-12.
  52. Feng, N., Zhou, Z. Z., Li, Y. X., Zhao, L. F., Xue, Z. F., Lu, R. and Jia, K. P., Enterovirus 71-induced has-miR-21 contributes to evasion of host immune system by targeting MyD88 and IRAK1. Virus Res. 2017. 237: 27-36.
  53. Zheng, Z., Li, H., Zhang, Z., Meng, J., Mao, D., Bai, B., Lu, B., et al., Enterovirus 71 2C protein inhibits TNF-α-mediated activation of NF-κB by suppressing IκB Kinase β phosphorylation. J. Immunol. 2011. 187: 2202-2212.
  54. Li, Q., Zheng, Z., Liu, Y., Zhang, Z., Liu, Q., Meng, J., Ke, X., et al., 2C proteins of enteroviruses suppress IKKβ phosphorylation by recruiting protein phosphatase 1. J. Virol. 2016. 90: 5141-5151.
  55. Qian, S., Fan, W., Liu, T., Wu, M., Zhang, H., Cui, X., Zhou, Y., et al., Seneca Valley Virus suppresses host type I interferon production by targeting adaptor proteins MAVS, TRIF, and TANK for cleavage. J. Virol. 2017. 91: e00823-00817.
  56. Xue, Q., Liu, H., Zhu, Z., Yang, F., Xue, Q., Cai, X., Liu, X., et al., Seneca valley virus 3C protease negatively regulates the type I interferon pathway by acting as a viral deubiquitinase. Antiviral Res. 2018. 160: 183-189.
  57. Fan, X., Han, S., Yan, D., Gao, Y., Wei, Y., Liu, X., Liao, Y., et al., Foot-and-mouth disease virus infection suppresses autophagy and NF-к B antiviral responses via degradation of ATG5-ATG12 by 3C pro. Cell Death Dis. 2018. 8: e2561-e2561.
  58. Huang, L., Liu, Q., Zhang, L., Zhang, Q., Hu, L., Li, C., Wang, S., et al., Encephalomyocarditis virus 3C protease relieves TANK inhibitory effect on TRAF6-mediated NF-kappaB signaling through cleavage of TANK. J. Biol. Chem. 2015: jbc. M115. 660761.
  59. Huang, L., Xiong, T., Yu, H., Zhang, Q., Zhang, K., Li, C., Hu, L., et al., Encephalomyocarditis virus 3C protease attenuates type I interferon production through disrupting the TANK-TBK1-IKKε-IRF3 complex. Biochem. J. 2017. 474: 2051-2065.
  60. Wang, D., Fang, L., Li, P., Sun, L., Fan, J., Zhang, Q., Luo, R., et al., The leader proteinase of foot-and-mouth disease virus negatively regulates the type I interferon pathway by acting as a viral deubiquitinase. J. Virol. 2011. 85: 3758-3766.
  61. Drahos, J. and Racaniello, V. R., Cleavage of IPS-1 in cells infected with human rhinovirus. J. Virol. 2009. 83: 11581-11587.
  62. De Los Santos, T., Diaz-San Segundo, F. and Grubman, M. J., Degradation of nuclear factor kappa B during foot-and-mouth disease virus infection. J. Virol. 2007. 81: 12803-12815.
  63. Wang, D., Fang, L., Luo, R., Ye, R., Fang, Y., Xie, L., Chen, H., et al., Foot-and-mouth disease virus leader proteinase inhibits dsRNA-induced type I interferon transcription by decreasing interferon regulatory factor 3/7 in protein levels. Biochem. Biophys. Res. Commun. 2010. 399: 72-78.
  64. Hato, S. V., Ricour, C., Schulte, B. M., Lanke, K. H., de Bruijni, M., Zoll, J., Melchers, W. J., et al., The mengovirus leader protein blocks interferon-α/β gene transcription and inhibits activation of interferon regulatory factor 3. Cell. Microbiol. 2007. 9: 2921-2930.
  65. Zoll, J., Melchers, W. J., Galama, J. M. and van Kuppeveld, F. J., The mengovirus leader protein suppresses alpha/beta interferon production by inhibition of the iron/ferritin-mediated activation of NF-κB. J. Virol. 2002. 76: 9664-9672.
  66. Stavrou, S., Feng, Z., Lemon, S. M. and Roos, R. P., Different strains of Theiler's murine encephalomyelitis virus antagonize different sites in the type I interferon pathway. J. Virol. 2010. 84: 9181-9189.
  67. Hoch Vieira Fernandes, M., Senecavirus: A Pathogenicity and Interactions with Host Cell Death Pathway 2019.
  68. Xue, Q., Liu, H., Zhu, Z., Yang, F., Ma, L., Cai, X., Xue, Q., et al., Seneca Valley Virus 3Cpro abrogates the IRF3-and IRF7-mediated innate immune response by degrading IRF3 and IRF7. Virology 2018. 518: 1-7.
  69. Kotla, S., Peng, T., Bumgarner, R. E. and Gustin, K. E., Attenuation of the type I interferon response in cells infected with human rhinovirus. Virology 2008. 374: 399-410.
  70. Neznanov, N., Chumakov, K. M., Neznanova, L., Almasan, A., Banerjee, A. K. and Gudkov, A. V., Proteolytic cleavage of the p65-RelA subunit of NF-κB during poliovirus infection. J. Biol. Chem. 2005. 280: 24153-24158.
  71. Du, H., Yin, P., Yang, X., Zhang, L., Jin, Q. and Zhu, G., Enterovirus 71 2C protein inhibits NF-κB activation by binding to RelA (p65). Sci. Rep. 2015. 5: 14302.
  72. Schoenborn, J. R. and Wilson, C. B., Regulation of interferon-γ during innate and adaptive immune responses. Adv. Immunol. 2007. 96: 41-101.
  73. Kloc, A., Rai, D. K. and Rieder, E., The roles of picornavirus untranslated regions in infection and innate immunity. Frontiers in Microbiology 2018. 9: 485.
  74. Chen, B., Wang, Y., Pei, X., Wang, S., Zhang, H. and Peng, Y., Cellular caspase-3 contributes to EV-A71 2A pro-mediated down-regulation of IFNAR1 at the translation level. Virologica Sinica 2019. 35:64-72.
  75. Hung, H.-C., Wang, H.-C., Shih, S.-R., Teng, I.-F., Tseng, C.-P. and Hsu, J. T.-A., Synergistic inhibition of enterovirus 71 replication by interferon and rupintrivir. Journal of Infectious Diseases 2011. 203: 1784-1790.
  76. Liu, Y., Zhang, Z., Zhao, X., Yu, R., Zhang, X., Wu, S., Liu, J., et al., Enterovirus 71 inhibits cellular type I interferon signaling by downregulating JAK1 protein expression. Viral Immunol. 2014. 27: 267-276.
  77. Chang, Z., Wang, Y., Bian, L., Liu, Q. and Long, J. E., Enterovirus 71 antagonizes the antiviral activity of host STAT3 and IL-6R with partial dependence on virus-induced miR-124. J. Gen. Virol. 2017. 98: 3008-3025.
  78. Wang, C., Sun, M., Yuan, X., Ji, L., Jin, Y., Cardona, C. J., et al., Enterovirus 71 suppresses interferon responses by blocking Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling through inducing karyopherin-α1 degradation. J. Biol. Chem. 2017. 292: 10262-10274.
  79. Du, Y., Bi, J., Liu, J., Liu, X., Wu, X., Jiang, P., Yoo, D., et al., 3Cpro of foot-and-mouth disease virus antagonizes the interferon signaling pathway by blocking STAT1/STAT2 nuclear translocation. J. Virol. 2014. 88: 4908-4920.
  80. Li, D., Wei, J., Yang, F., Liu, H.-N., Zhu, Z.-X., Cao, W.-J., Li, S., et al., Foot-and-mouth disease virus structural protein VP3 degrades Janus kinase 1 to inhibit IFN-γ signal transduction pathways. Cell Cycle 2016. 15: 850-860.
  81. Peng, Q., Lan, X., Wang, C., Ren, Y., Yue, N., Wang, J., Zhong, B., et al., Kobuvirus VP3 protein restricts the IFN-β-triggered signaling pathway by inhibiting STAT2-IRF9 and STAT2-STAT2 complex formation. Virology 2017. 507: 161-169.
  82. Black, T. L., Safer, B., Hovanessian, A. and Katze, M. G., The cellular 68,000-Mr protein kinase is highly autophosphorylated and activated yet significantly degraded during poliovirus infection: implications for translational regulation. J. Virol. 1989. 63: 2244-2251.
  83. Black, T. L., Barber, G. N. and Katze, M. G., Degradation of the interferon-induced 68,000-M(r) protein kinase by poliovirus requires RNA. J. Virol. 1993. 67: 791-800.
  84. Chang, Y.-H., Lau, K. S., Kuo, R.-L. and Horng, J.-T., dsRNA binding domain of PKR is proteolytically released by enterovirus A71 to facilitate viral replication. Frontiers in Cellular and Infection Microbiology 2017. 7: 284.
  85. De Los Santos, T., de Avila Botton, S., Weiblen, R. and Grubman, M. J., The leader proteinase of foot-and-mouth disease virus inhibits the induction of beta interferon mRNA and blocks the host innate immune response. J. Virol. 2006. 80: 1906-1914.
  86. Li, W., Zhu, Z., Cao, W., Yang, F., Zhang, X., Li, D., Zhang, K., et al., Esterase D enhances type I interferon signal transduction to suppress foot-and-mouth disease virus replication. Mol. Immunol. 2016. 75: 112-121.
  87. Li, C., Zhu, Z., Du, X., Cao, W., Yang, F., Zhang, X., Feng, H., et al., Foot-and-mouth disease virus induces lysosomal degradation of host protein kinase PKR by 3C proteinase to facilitate virus replication. Virology 2017. 509: 222-231.
  88. Borghese, F., Sorgeloos, F., Cesaro, T. and Michiels, T., The leader protein of Theiler's virus prevents the activation of PKR. J. Virol. 2019. 93: e01010-01019.
  89. Li, X.-L., Blackford, J. A. and Hassel, B. A., RNase L mediates the antiviral effect of interferon through a selective reduction in viral RNA during encephalomyocarditis virus infection. J. Virol. 1998. 72: 2752-2759.
  90. Martinand, C., Salehzada, T., Silhol, M., Lebleu, B. and Bisbal, C., RNase L inhibitor (RLI) antisense constructions block partially the down regulation of the 2-5A/RNase L pathway in encephalomyocarditis-virus-(EMCV)-infected cells. Eur. J. Biochem. 1998. 254: 248-255.
  91. Sorgeloos, F., Jha, B. K., Silverman, R. H. and Michiels, T., Evasion of antiviral innate immunity by Theiler's virus L* protein through direct inhibition of RNase L. PLoS Pathog. 2013. 9: e1003474.
  92. Flodström-Tullberg, M., Hultcrantz, M., Stotland, A., Maday, A., Tsai, D., Fine, C., Williams, B., et al., RNase L and double-stranded RNA-dependent protein kinase exert complementary roles in islet cell defense during coxsackievirus infection. J. Immunol. 2005. 174: 1171-1177.
  93. Han, J.-Q., Townsend, H. L., Jha, B. K., Paranjape, J. M., Silverman, R. H. and Barton, D. J., A phylogenetically conserved RNA structure in the poliovirus open reading frame inhibits the antiviral endoribonuclease RNase L. J. Virol. 2007. 81: 5561-5572.
  94. Perng, Y.-C. and Lenschow, D. J., ISG15 in antiviral immunity and beyond. Nat. Rev. Microbiol. 2018. 16: 423-439.
  95. Swatek, K. N., Aumayr, M., Pruneda, J. N., Visser, L. J., Berryman, S., Kueck, A. F., Geurink, P. P., et al., Irreversible inactivation of ISG15 by a viral leader protease enables alternative infection detection strategies. Proc. Natl. Acad. Sci. USA 2018. 115: 2371-2376.
  96. Rahnefeld, A., Klingel, K., Schuermann, A., Diny, N. L., Althof, N., Lindner, A., Bleienheuft, P., et al., Ubiquitin-like protein ISG15 (interferon-stimulated gene of 15 kDa) in host defense against heart failure in a mouse model of virus-induced cardiomyopathy. Circulation 2014. 130: 1589-1600.
  97. Liu, J., Liu, L., Zeng, S. S., Meng, X., Lei, N., Yang, H., Li, R., et al., Inhibition of EV71 replication by L3HYPDH, a newly identified interferon-stimulated gene product. bioRxiv 2018: 304345.
  98. Visser, W. F., Verhoeven-Duif, N. M. and de Koning, T. J., Identification of a human trans-3-hydroxy-l-proline dehydratase, the first characterized member of a novel family of proline racemase-like enzymes. J. Biol. Chem. 2012. 287: 21654-21662.
  99. Schmeisser, H., Mejido, J., Balinsky, C., Morrow, A., Clark, C., Zhao, T. and Zoon, K., Identification of alpha interferon-induced genes associated with antiviral activity in Daudi cells and characterization of IFIT3 as a novel antiviral gene. J. Virol. 2010. 84: 10671-10680.
  100. Fensterl, V., Wetzel, J. L., Ramachandran, S., Ogino, T., Stohlman, S. A., Bergmann, C. C., Diamond, M. S., et al., Interferon-induced Ifit2/ISG54 protects mice from lethal VSV neuropathogenesis. PLoS Pathog. 2012. 8: e1002712.
  101. Fensterl, V. and Sen, G. C., Interferon-induced Ifit proteins: their role in viral pathogenesis. J. Virol. 2015. 89: 2462-2468.
  102. Nayak, A., Goodfellow, I. G., Woolaway, K. E., Birtley, J., Curry, S. and Belsham, G. J., Role of RNA structure and RNA binding activity of foot-and-mouth disease virus 3C protein in VPg uridylylation and virus replication. J. Virol. 2006. 80: 9865-9875.
  103. Seo, J. Y., Yaneva, R. and Cresswell, P., Viperin: a multifunctional, interferon-inducible protein that regulates virus replication. Cell Host Microbe 2011. 10: 534-539.
  104. Pelikan, J. B., The regulation of human airway epithelial expression of viperin by human rhinovirus. Graduate Studies 2012.
  105. Wei, C., Zheng, C., Sun, J., Luo, D., Tang, Y., Zhang, Y., Ke, X., et al., Viperin inhibits enterovirus A71 replication by interacting with viral 2C protein. Viruses 2019. 11: 13.
  106. Chen, Z. J., Bhargava, R. S., Sun, L. and Li, X.-d., MAVS in the prevention and treatment of viral diseases. Google Patents 2009.
  107. Díaz-San Segundo, F., Weiss, M., Pérez-Martín, E., Dias, C. C., Grubman, M. J. and de los Santos, T., Inoculation of swine with foot-and-mouth disease SAP-mutant virus induces early protection against disease. J. Virol. 2012. 86: 1316-1327.
  108. Deszcz, L., Cencic, R., Sousa, C., Kuechler, E. and Skern, T., An antiviral peptide inhibitor that is active against picornavirus 2A proteinases but not cellular caspases. J. Virol. 2006. 80: 9619-9627.
  109. Zhu, Z. X., Li, C. T., Du, X. L., Wang, G. Q., Cao, W. J., Yang, F., Feng, H. H., et al., Foot-and-mouth disease virus infection inhibits LGP2 protein expression to exaggerate inflammatory response and promote viral replication. Cell Death Dis. 2017. 8: e2747.
  110. Li, D., Lei, C., Xu, Z., Yang, F., Liu, H., Zhu, Z., Li, S., et al., Foot-and-mouth disease virus non-structural protein 3A inhibits the interferon-β signaling pathway. Sci. Rep. 2016. 6: 21888.
  111. Wang, D., Fang, L., Li, K., Zhong, H., Fan, J., Ouyang, C., Zhang, H., et al., Foot-and-mouth disease virus 3C protease cleaves NEMO to impair innate immune signaling. J. Virol. 2012. 86: 9311-9322.
  112. Lei, X., Xiao, X., Xue, Q., Jin, Q., He, B. and Wang, J., Cleavage of interferon regulatory factor 7 by enterovirus 71 3C suppresses cellular responses. J. Virol. 2013. 87: 1690-1698.
  113. Xiang, Z., Liu, L., Lei, X., Zhou, Z., He, B. and Wang, J., 3C protease of enterovirus D68 inhibits cellular defense mediated by interferon regulatory factor 7. J. Virol. 2016. 90: 1613-1621.
  114. Lu, J., Yi, L., Zhao, J., Yu, J., Chen, Y., Lin, M. C., Kung, H.-F., et al., Enterovirus 71 disrupts interferon signaling by reducing the level of interferon receptor 1. J. Virol. 2012. 86: 3767-3776.

Grants

  1. 31972688/National Natural Sciences Foundation of China
  2. 19ZDNA001/Key Technologies R&D Program of Gansu Province
  3. 2018YFD0500103/National Key Research and Development Project
  4. CAAS-XTCX2020011-01-10/Collaborative Innovation Project of CAAS

MeSH Term

Animals
Host-Pathogen Interactions
Humans
Immune Evasion
Immunity, Innate
Picornaviridae
Picornaviridae Infections

Word Cloud

Created with Highcharts 10.0.0immunehostantiviralevasionpicornaviruswillPRRsinnatefactorspicornavirusesfamilyPicornaviridaehelpviralsignaltransductionadaptoractivationseveralkinasestranscriptionwellstrategiesresponsecompriseslargenumbervirusescausediseasebroadspectrumhostsposedseriouspublichealthconcernsworldwideledsignificanteconomicburdencomprehensiveunderstandingvirus-hostinteractionsinfectionspreventcurediseasesUponinfectionpathogenrecognitionreceptorssenseRNAactivateresponsesactivatedinitiateseriesproteinsleadscontributesconsequentexpressioninterferonsIFNsIFN-induciblegenesvariousinflammatorycytokineschemokinescontrastmaintainreplicationspreadevolvedelegantblocksignalinghinderreviewsummarizerecentprogressmemberscounteractdetectionblockingmoleculesdisruptingcounteractionrestrictionknowledgeusbetterunderstandpathogenesisprovideinsightsdevelopingimprovementvaccinesInnateImmuneimmunityinterferon

Similar Articles

Cited By