Prebiotic Origin of Pre-RNA Building Blocks in a Urea "Warm Little Pond" Scenario.

C Menor Salván, Marcos Bouza, David M Fialho, Bradley T Burcar, Facundo M Fernández, Nicholas V Hud
Author Information
  1. C Menor Salván: NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA 30302, USA.
  2. Marcos Bouza: NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA 30302, USA.
  3. David M Fialho: NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA 30302, USA.
  4. Bradley T Burcar: NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA 30302, USA.
  5. Facundo M Fernández: NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA 30302, USA.
  6. Nicholas V Hud: NSF-NASA Center for Chemical Evolution, Georgia Institute of Technology, Atlanta, GA 30302, USA.

Abstract

Urea appears to be a key intermediate of important prebiotic synthetic pathways. Concentrated pools of urea likely existed on the surface of the early Earth, as urea is synthesized in significant quantities from hydrogen cyanide or cyanamide (widely accepted prebiotic molecules), it has extremely high water solubility, and it can concentrate to form eutectics from aqueous solutions. We propose a model for the origin of a variety of canonical and non-canonical nucleobases, including some known to form supramolecular assemblies that contain Watson-Crick-like base pairs.The dual nucleophilic-electrophilic character of urea makes it an ideal precursor for the formation of nitrogenous heterocycles. We propose a model for the origin of a variety of canonical and noncanonical nucleobases, including some known to form supramolecular assemblies that contain Watson-Crick-like base pairs. These reactions involve urea condensation with other prebiotic molecules (e. g., malonic acid) that could be driven by environmental cycles (e. g., freezing/thawing, drying/wetting). The resulting heterocycle assemblies are compatible with the formation of nucleosides and, possibly, the chemical evolution of molecular precursors to RNA. We show that urea eutectics at moderate temperature represent a robust prebiotic source of nitrogenous heterocycles. The simplicity of these pathways, and their independence from specific or rare geological events, support the idea of urea being of fundamental importance to the prebiotic chemistry that gave rise to life on Earth.

Keywords

References

  1. M. W. Powner, J. D. Sutherland, Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 2870-2877.
  2. J. D. Sutherland, Angew. Chem. Int. Ed. 2016, 55, 104-121.
  3. M. W. Powner, B. Gerland, J. D. Sutherland, Nature 2009, 459, 239-242.
  4. H. Okamura, S. Becker, N. Tiede, S. Wiedemann, J. Feldmann, T. Carell, Chem. Commun. 2019, DOI 10.1039/C8CC09435G.
  5. S. Becker, I. Thoma, A. Deutsch, T. Gehrke, P. Mayer, H. Zipse, T. Carell, Science 2016, 352, 833-836.
  6. H.-J. Kim, S. A. Benner, Proc. Mont. Acad. Sci. 2017, 201710778.
  7. A. E. Engelhart, N. V. Hud, Cold Spring Harbor Perspect. Biol. 2010, 2, 1-21.
  8. N. V. Hud, B. J. Cafferty, R. Krishnamurthy, L. D. Williams, Chem. Biol. 2013, 20, 466-474.
  9. B. J. Cafferty, N. V. Hud, Curr. Opin. Chem. Biol. 2014, 22, 146-157.
  10. N. V. Hud, Synlett 2017, 28, 36-55.
  11. B. J. Cafferty, D. M. Fialho, J. Khanam, R. Krishnamurthy, N. V. Hud, Nat. Commun. 2016, 7, 1-8.
  12. D. M. Fialho, K. C. Clarke, M. K. Moore, G. B. Schuster, R. Krishnamurthy, N. V. Hud, Org. Biomol. Chem. 2018, 16, 1263-1271.
  13. R. Navarro-González, A. Negrón-mendoza, E. Chacón, Origins Life Evol. Biospheres 1989, 19, 109-118.
  14. R. Lohrmann, J. Mol. Evol. 1972, 1, 263-269.
  15. L. Stanley Miller, Science 1953, 117, 528-529.
  16. B. Burcar, M. Pasek, M. Gull, B. J. Cafferty, F. Velasco, N. V. Hud, C. Menor-Salván, Angew. Chem. Int. Ed. 2016, 55, 13249-13253.
  17. C. Menor-Salván, M. R. Marín-Yaseli, Chem. Eur. J. 2013, 19, 6488-6497.
  18. C. Menor-Salván, D. M. Ruiz-Bermejo, M. I. Guzmán, S. Osuna-Esteban, S. Veintemillas-Verdaguer, Chem. Eur. J. 2009, 15, 4411-4418.
  19. C. He, I. Gállego, B. Laughlin, M. A. Grover, N. V. Hud, Nat. Chem. 2017, 9, 318-324.
  20. M. C. Chen, B. J. Cafferty, I. Mamajanov, I. Gállego, J. Khanam, R. Krishnamurthy, N. V. Hud, J. Am. Chem. Soc. 2014, 136, 5640-5646; C.V. Mungi, S.K. Singh, J. Chugh, S. Rajamani, Physical Chemistry Chemical Physics 2016, 18, 20144-20152.
  21. C. Menor-Salván in Prebiotic Chemistry and Chemical Evolution of Nucleic Acids (Ed.: C. Menor-Salvn), Springer International, Basel, 2018, pp. 85-142.
  22. S. Becker, J. Feldmann, S. Wiedemann, H. Okamura, C. Schneider, K. Iwan, A. Crisp, M. Rossa, T. Amatov, T. Carell, Science 2019, 366, 76-82.
  23. U. P. Trinks, Zur Chemie der Aminopyrimidine, Eidgenössischen Technischen Hochschule Zürich (Switzerland), 1987.
  24. G. Springsteen, J. R. Yerabolu, J. Nelson, C. J. Rhea, R. Krishnamurthy, Nat. Commun. 2018, 9, 91.
  25. J. C. Ambelang, T. B. Johnson, J. Am. Chem. Soc. 1941, 63, 1289-1291.
  26. E. Smolin, L. Rapoport, The Chemistry of Heterocyclic Compounds. S-Triazines and Derivatives, Interscience, New York, 1959.
  27. M. Hernández-Rodríguez, J. Xie, Y. M. Osornio, R. Krishnamurthy, Chem. Asian J. 2011, 6, 1252-1262.
  28. S. Becker, C. Schneider, H. Okamura, A. Crisp, T. Amatov, M. Dejmek, T. Carell, Nat. Commun. 2018, 9, 1-9.

MeSH Term

Earth, Planet
Evolution, Chemical
Malonates
Origin of Life
RNA
Temperature
Urea

Chemicals

Malonates
RNA
Urea
malonic acid

Word Cloud

Created with Highcharts 10.0.0ureaprebioticformassembliesUreapathwaysEarthmoleculeseutecticsproposemodeloriginvarietycanonicalnucleobasesincludingknownsupramolecularcontainWatson-Crick-likebasepairsformationnitrogenousheterocyclese gnucleosideschemistrylifeappearskeyintermediateimportantsyntheticConcentratedpoolslikelyexistedsurfaceearlysynthesizedsignificantquantitieshydrogencyanidecyanamidewidelyacceptedextremelyhighwatersolubilitycanconcentrateaqueoussolutionsnon-canonicalThedualnucleophilic-electrophiliccharactermakesidealprecursornoncanonicalreactionsinvolvecondensationmalonicaciddrivenenvironmentalcyclesfreezing/thawingdrying/wettingresultingheterocyclecompatiblepossiblychemicalevolutionmolecularprecursorsRNAshowmoderatetemperaturerepresentrobustsourcesimplicityindependencespecificraregeologicaleventssupportideafundamentalimportancegaverisePrebioticOriginPre-RNABuildingBlocks"WarmLittlePond"Scenariooriginspyrimidines

Similar Articles

Cited By