The study of host-microbiome (co)evolution across levels of selection.

Britt Koskella, Joy Bergelson
Author Information
  1. Britt Koskella: Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
  2. Joy Bergelson: Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA.

Abstract

Microorganismal diversity can be explained in large part by selection imposed from both the abiotic and biotic environments, including-in the case of host-associated microbiomes-interactions with eukaryotes. As such, the diversity of host-associated microbiomes can be usefully studied across a variety of scales: within a single host over time, among host genotypes within a population, between populations and among host species. A plethora of recent studies across these scales and across diverse systems are: (i) exemplifying the importance of the host genetics in shaping microbiome composition; (ii) uncovering the role of the microbiome in shaping key host phenotypes; and (iii) highlighting the dynamic nature of the microbiome. They have also raised a critical question: do these complex associations fit within our existing understanding of evolution and coevolution, or do these often intimate and seemingly cross-generational interactions follow novel evolutionary rules from those previously identified? Herein, we describe the known importance of (co)evolution in host-microbiome systems, placing the existing data within extant frameworks that have been developed over decades of study, and ask whether there are unique properties of host-microbiome systems that require a paradigm shift. By examining when and how selection can act on the host and its microbiome as a unit (termed, the holobiont), we find that the existing conceptual framework, which focuses on individuals, as well as interactions among individuals and groups, is generally well suited for understanding (co)evolutionary change in these intimate assemblages. This article is part of the theme issue 'The role of the microbiome in host evolution'.

Keywords

References

  1. ISME J. 2016 Sep;10(9):2235-45 [PMID: 26953599]
  2. Mol Ecol. 2017 Apr;26(8):2379-2391 [PMID: 28133884]
  3. Am Nat. 1997 Jul;150 Suppl 1:S59-79 [PMID: 18811313]
  4. Proc Natl Acad Sci U S A. 2000 Aug 15;97(17):9365-6 [PMID: 10944208]
  5. Proc Natl Acad Sci U S A. 2019 Jan 15;116(3):923-928 [PMID: 30598446]
  6. Proc Biol Sci. 2016 Jun 29;283(1833): [PMID: 27335421]
  7. Science. 1999 Jun 25;284(5423):2116-8 [PMID: 10381869]
  8. Curr Opin Microbiol. 2018 Apr;42:104-109 [PMID: 29197823]
  9. Proc Natl Acad Sci U S A. 2019 Oct 1;116(40):20025-20032 [PMID: 31527278]
  10. ISME J. 2014 Jun;8(6):1198-209 [PMID: 24401862]
  11. Trends Microbiol. 2017 Sep;25(9):703-712 [PMID: 28549825]
  12. mBio. 2016 Mar 31;7(2):e02099 [PMID: 27034285]
  13. Trends Ecol Evol. 2013 Jun;28(6):367-75 [PMID: 23523051]
  14. Microbiome. 2018 Apr 25;6(1):78 [PMID: 29695294]
  15. Trends Ecol Evol. 2016 Jul;31(7):539-549 [PMID: 27039196]
  16. PLoS One. 2014 Jul 23;9(7):e102451 [PMID: 25054627]
  17. Science. 2015 Sep 11;349(6253):1172-3 [PMID: 26359393]
  18. Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2849-54 [PMID: 21282658]
  19. ISME J. 2020 Jan;14(1):135-150 [PMID: 31595051]
  20. PLoS Biol. 2012;10(5):e1001330 [PMID: 22615541]
  21. Evolution. 2015 Feb;69(2):283-93 [PMID: 25494960]
  22. Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):13114-13119 [PMID: 27799532]
  23. mBio. 2019 Oct 8;10(5): [PMID: 31594812]
  24. mBio. 2020 Jan 21;11(1): [PMID: 31964727]
  25. Ecol Lett. 2014 Jul;17(7):881-90 [PMID: 24735225]
  26. Genome Biol. 2001;2(12):RESEARCH0054 [PMID: 11790257]
  27. Trends Microbiol. 2019 Oct;27(10):836-849 [PMID: 31257129]
  28. PLoS One. 2013 Nov 01;8(11):e79061 [PMID: 24223880]
  29. Science. 2001 Oct 12;294(5541):321-6 [PMID: 11598291]
  30. Evolution. 1980 May;34(3):611-612 [PMID: 28568694]
  31. mSystems. 2019 Mar 19;4(2): [PMID: 30944875]
  32. Q Rev Biol. 2012 Dec;87(4):325-41 [PMID: 23397797]
  33. Ann N Y Acad Sci. 1987;503:295-306 [PMID: 3304078]
  34. PLoS Biol. 2008 Mar 4;6(3):e68 [PMID: 18318603]
  35. Annu Rev Phytopathol. 2011;49:291-315 [PMID: 19400639]
  36. Science. 2010 Jul 9;329(5988):212-5 [PMID: 20616278]
  37. ISME J. 2014 Apr;8(4):790-803 [PMID: 24196324]
  38. Curr Opin Plant Biol. 2000 Aug;3(4):299-304 [PMID: 10873849]
  39. Proc Natl Acad Sci U S A. 2019 Jul 16;116(29):14391-14394 [PMID: 31311888]
  40. Evolution. 2018 May 28;: [PMID: 29808565]
  41. FEMS Microbiol Lett. 2019 May 1;366(10): [PMID: 31132110]
  42. PLoS Comput Biol. 2012;8(8):e1002633 [PMID: 22956894]
  43. Curr Opin Microbiol. 2016 Aug;32:103-112 [PMID: 27280851]
  44. Nat Commun. 2017 Jul 04;8:15973 [PMID: 28675159]
  45. Nat Ecol Evol. 2019 Aug;3(8):1172-1183 [PMID: 31285574]
  46. PLoS Biol. 2015 Dec 04;13(12):e1002311 [PMID: 26636661]
  47. Ecology. 2016 Jul;97(7):1712-1723 [PMID: 27859175]
  48. Proc Natl Acad Sci U S A. 2020 Jan 14;117(2):1148-1159 [PMID: 31806755]
  49. Nature. 2014 Aug 28;512(7515):436-440 [PMID: 25043057]
  50. Cell. 2016 May 5;165(4):854-66 [PMID: 27153496]
  51. Biol Direct. 2018 Oct 26;13(1):24 [PMID: 30621755]
  52. FEMS Microbiol Rev. 2008 Aug;32(5):723-35 [PMID: 18549407]
  53. Proc Biol Sci. 2007 Aug 22;274(1621):1979-84 [PMID: 17567556]
  54. Science. 2013 Aug 9;341(6146):667-9 [PMID: 23868918]
  55. PLoS Biol. 2016 Jan 20;14(1):e1002352 [PMID: 26788878]
  56. Mol Ecol. 2017 Feb;26(4):1175-1189 [PMID: 27862531]
  57. ISME J. 2019 Feb;13(2):547-556 [PMID: 30310167]
  58. Ecol Lett. 2012 May;15(5):425-35 [PMID: 22372578]
  59. Microbiome. 2019 Jan 11;7(1):5 [PMID: 30635058]
  60. Microbiome. 2018 Apr 26;6(1):79 [PMID: 29695286]
  61. Nat Rev Genet. 2007 Mar;8(3):185-95 [PMID: 17279094]
  62. Proc Biol Sci. 2006 Feb 22;273(1585):425-9 [PMID: 16615208]
  63. Trends Ecol Evol. 2007 Mar;22(3):120-6 [PMID: 17137675]
  64. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4284-E4293 [PMID: 29666229]
  65. Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10255-61 [PMID: 26039986]
  66. Evol Lett. 2019 Sep 11;3(5):534-543 [PMID: 31636945]
  67. Ecology. 2012 Apr;93(4):719-25 [PMID: 22690622]
  68. Proc Natl Acad Sci U S A. 2020 Jan 28;117(4):2113-2121 [PMID: 31964845]
  69. mBio. 2019 Mar 5;10(2): [PMID: 30837345]
  70. Proc Biol Sci. 2020 Jan 29;287(1919):20192549 [PMID: 31992172]
  71. PLoS Biol. 2015 Aug 18;13(8):e1002226 [PMID: 26284777]
  72. Microbiome. 2017 Sep 25;5(1):127 [PMID: 28946894]
  73. J Exp Zool B Mol Dev Evol. 2019 Dec;332(8):349-355 [PMID: 31709760]
  74. Int Microbiol. 2013 Sep;16(3):133-43 [PMID: 24568029]
  75. Ecol Lett. 2012 Oct;15(10):1071-82 [PMID: 22747703]

MeSH Term

Biological Coevolution
Host Microbial Interactions
Microbiota
Selection, Genetic

Word Cloud

Created with Highcharts 10.0.0hostmicrobiomeselectionacrosswithincanamongsystemsexistingevolutioninteractionscohost-microbiomediversityparthost-associatedimportanceshapingroleunderstandingintimateevolutionarystudyholobiontindividualswellMicroorganismalexplainedlargeimposedabioticbioticenvironmentsincluding-incasemicrobiomes-interactionseukaryotesmicrobiomesusefullystudiedvarietyscales:singletimegenotypespopulationpopulationsspeciesplethorarecentstudiesscalesdiverseare:exemplifyinggeneticscompositioniiuncoveringkeyphenotypesiiihighlightingdynamicnaturealsoraisedcriticalquestion:complexassociationsfitcoevolutionoftenseeminglycross-generationalfollownovelrulespreviouslyidentified?Hereindescribeknownplacingdataextantframeworksdevelopeddecadesaskwhetheruniquepropertiesrequireparadigmshiftexaminingactunittermedfindconceptualframeworkfocusesgroupsgenerallysuitedchangeassemblagesarticlethemeissue'Theevolution'levelsgrouphost���symbionttransmission

Similar Articles

Cited By