The effects of tissue fixation on sequencing and transcript abundance of nucleic acids from microdissected liver samples of smallmouth bass (Micropterus dolomieu).

Heather L Walsh, Adam J Sperry, Vicki S Blazer
Author Information
  1. Heather L Walsh: U.S. Geological Survey, National Fish Health Research Laboratory, Leetown Science Center, Kearneysville, West Virginia, United States of America. ORCID
  2. Adam J Sperry: U.S. Geological Survey, National Fish Health Research Laboratory, Leetown Science Center, Kearneysville, West Virginia, United States of America.
  3. Vicki S Blazer: U.S. Geological Survey, National Fish Health Research Laboratory, Leetown Science Center, Kearneysville, West Virginia, United States of America.

Abstract

There is an increasing emphasis on effects-based monitoring to document responses associated with exposure to complex mixtures of chemicals, climate change, pathogens, parasites and other environmental stressors in fish populations. For decades aquatic monitoring programs have included the collection of tissues preserved for microscopic pathology. Consequently, formalin-fixed, paraffin-embedded (FFPE) tissue can be an important reservoir of nucleic acids as technologies emerge that utilize molecular endpoints. Despite the cross-linking effects of formalin, its impact on nucleic acid quality and concentration, amplification, and sequencing are not well described. While fresh-frozen tissue is optimal for working with nucleic acids, FFPE samples have been shown to be conducive for molecular studies. Laser capture microdissection (LCM) is one technology which allows for collection of specific regions or cell populations from fresh or preserved specimens with pathological alterations, pathogens, or parasites. In this study, Smallmouth bass (Micropterus dolomieu) liver was preserved in three different fixatives, including 10% neutral buffered formalin (NBF), Z-Fix® (ZF), and PAXgene® (PG) for four time periods (24 hr, 48 hr, seven days, and 14 days). Controls consisted of pieces of liver preserved in RNALater® or 95% ethanol. Smallmouth bass were chosen as they are an economically important sportfish and have been utilized as indicators of exposure to endocrine disruptors and other environmental stressors. Small liver sections were cut out with laser microdissection and DNA and RNA were purified and analyzed for nucleic acid concentration and quality. Sanger sequencing and the NanoString nCounter® technology were used to assess the suitability of these samples in downstream molecular techniques. The results revealed that of the formalin fixatives, NBF samples fixed for 24 and 48 hr were superior to ZF samples for both Sanger sequencing and the Nanostring nCounter®. The non-formalin PAXgene® samples were equally successful and they showed greater stability in nucleic acid quality and concentration over longer fixation times. This study demonstrated that small quantities of preserved tissue from Smallmouth bass can be utilized in downstream molecular techniques; however, future studies will need to optimize the methods presented here for different tissue types, fish species, and pathological conditions.

References

  1. Environ Toxicol Chem. 2015 Aug;34(8):1693-704 [PMID: 25827364]
  2. Proc Natl Acad Sci U S A. 2005 Feb 8;102(6):2204-9 [PMID: 15677717]
  3. Proc Natl Acad Sci U S A. 2000 May 23;97(11):6085-90 [PMID: 10823953]
  4. Biol Reprod. 2008 Oct;79(4):738-47 [PMID: 18614701]
  5. Sensors (Basel). 2012;12(9):12741-71 [PMID: 23112741]
  6. Environ Monit Assess. 2018 Sep 6;190(10):577 [PMID: 30191322]
  7. PLoS One. 2017 Apr 12;12(4):e0174762 [PMID: 28403149]
  8. Methods. 2001 Dec;25(4):409-18 [PMID: 11846610]
  9. Int J Med Sci. 2014 Mar 27;11(5):494-9 [PMID: 24688314]
  10. Rom J Morphol Embryol. 2012;53(4):893-902 [PMID: 23303011]
  11. Comp Biochem Physiol Part D Genomics Proteomics. 2016 Dec;20:27-40 [PMID: 27497300]
  12. BMC Genomics. 2013 Mar 14;14:173 [PMID: 23497127]
  13. Am J Pathol. 2002 Dec;161(6):1961-71 [PMID: 12466110]
  14. Cancer Res. 2004 Aug 1;64(15):5245-50 [PMID: 15289330]
  15. BMC Clin Pathol. 2016 Nov 14;16:17 [PMID: 28649177]
  16. J Parasitol. 2011 Oct;97(5):868-77 [PMID: 21495828]
  17. PLoS One. 2012;7(11):e50586 [PMID: 23226320]
  18. Anal Biochem. 2010 May 1;400(1):110-7 [PMID: 20079706]
  19. BMC Clin Pathol. 2015 Sep 24;15:17 [PMID: 26412982]
  20. J Histochem Cytochem. 2011 Jan;59(1):68-75 [PMID: 20940453]
  21. Dis Aquat Organ. 2013 May 27;104(2):113-20 [PMID: 23709464]
  22. Asian Pac J Cancer Prev. 2007 Jan-Mar;8(1):55-9 [PMID: 17477772]
  23. Methods Mol Biol. 2005;293:39-55 [PMID: 16028409]
  24. J Histochem Cytochem. 2002 Sep;50(9):1237-45 [PMID: 12185202]
  25. Environ Toxicol Pharmacol. 2018 Apr;59:87-93 [PMID: 29549817]
  26. BMC Genomics. 2019 Feb 13;20(1):134 [PMID: 30760197]
  27. Sci Total Environ. 2005 Nov 1;350(1-3):161-93 [PMID: 16227080]
  28. Sci Rep. 2018 May 10;8(1):7476 [PMID: 29748573]
  29. PLoS One. 2014 May 30;9(5):e98187 [PMID: 24878701]
  30. Arch Pathol Lab Med. 2008 Dec;132(12):1929-35 [PMID: 19061293]
  31. Comp Biochem Physiol. 1969 Feb;28(2):897-905 [PMID: 5778268]
  32. Virchows Arch. 2012 Feb;460(2):131-40 [PMID: 22270699]
  33. Transl Oncol. 2014 Dec;7(6):687-93 [PMID: 25500077]
  34. Environ Health Perspect. 2010 Jan;118(1):1-5 [PMID: 20056575]
  35. Diagn Mol Pathol. 2009 Jun;18(2):103-7 [PMID: 19430294]
  36. BMC Bioinformatics. 2012 Jun 18;13:134 [PMID: 22708584]
  37. Science. 1996 Nov 8;274(5289):998-1001 [PMID: 8875945]
  38. Cancer Res. 2015 Jul 1;75(13):2587-93 [PMID: 26069246]
  39. Methods Mol Biol. 2011;724:105-15 [PMID: 21370009]
  40. J Fish Biol. 2013 Nov;83(5):1459-67 [PMID: 24131303]
  41. PLoS One. 2011;6(11):e27704 [PMID: 22110732]
  42. Prostate Cancer Prostatic Dis. 2008;11(2):194-7 [PMID: 17768422]
  43. BMC Genomics. 2015 Nov 03;16:892 [PMID: 26531060]
  44. Histol Histopathol. 2020 Jan;35(1):57-68 [PMID: 31184368]
  45. J Histochem Cytochem. 2008 Nov;56(11):1033-42 [PMID: 18711211]
  46. Melanoma Res. 2020 Feb;30(1):26-38 [PMID: 31567589]
  47. Exp Mol Pathol. 2013 Feb;94(1):188-94 [PMID: 22814231]
  48. J Mol Diagn. 2004 Nov;6(4):290-6 [PMID: 15507667]
  49. Nucleic Acids Res. 1996 Dec 15;24(24):5026-33 [PMID: 9016676]
  50. Curr Protoc Mol Biol. 2011 Apr;Chapter 25:Unit25B.10 [PMID: 21472696]
  51. J Clin Microbiol. 2018 Nov 27;56(12): [PMID: 30282788]
  52. Dis Aquat Organ. 2010 Jan 25;88(2):127-41 [PMID: 20225674]
  53. Lab Invest. 2003 Jun;83(6):889-99 [PMID: 12808124]
  54. Comp Biochem Physiol A Mol Integr Physiol. 2015 Dec;190:39-46 [PMID: 26358831]

MeSH Term

Animals
Bass
DNA
DNA Cleavage
Endocrine Disruptors
Environmental Monitoring
Fixatives
Formaldehyde
Gene Expression Profiling
Liver
Microdissection
Nucleic Acid Denaturation
RNA
RNA Stability
Sequence Analysis, DNA
Time Factors
Tissue Fixation
West Virginia

Chemicals

Endocrine Disruptors
Fixatives
Formaldehyde
RNA
DNA

Word Cloud

Created with Highcharts 10.0.0nucleicsamplespreservedtissuemolecularsequencingbassliveracidsformalinacidqualityconcentrationsmallmouthhrmonitoringexposurepathogensparasitesenvironmentalstressorsfishpopulationscollectionFFPEcanimportanteffectsstudiesmicrodissectiontechnologypathologicalstudyMicropterusdolomieudifferentfixativesNBFZFPAXgene®2448daysutilizedSangernCounter®downstreamtechniquesfixationincreasingemphasiseffects-baseddocumentresponsesassociatedcomplexmixtureschemicalsclimatechangedecadesaquaticprogramsincludedtissuesmicroscopicpathologyConsequentlyformalin-fixedparaffin-embeddedreservoirtechnologiesemergeutilizeendpointsDespitecross-linkingimpactamplificationwelldescribedfresh-frozenoptimalworkingshownconduciveLasercaptureLCMoneallowsspecificregionscellfreshspecimensalterationsthreeincluding10%neutralbufferedZ-Fix®PGfourtimeperiodsseven14ControlsconsistedpiecesRNALater®95%ethanolSmallmouthchoseneconomicallysportfishindicatorsendocrinedisruptorsSmallsectionscutlaserDNARNApurifiedanalyzedNanoStringusedassesssuitabilityresultsrevealedfixedsuperiorNanostringnon-formalinequallysuccessfulshowedgreaterstabilitylongertimesdemonstratedsmallquantitieshoweverfuturewillneedoptimizemethodspresentedtypesspeciesconditionstranscriptabundancemicrodissected

Similar Articles

Cited By (1)