From Human Pluripotent Stem Cells to 3D Cardiac Microtissues: Progress, Applications and Challenges.

Mariana A Branco, Joaquim M S Cabral, Maria Margarida Diogo
Author Information
  1. Mariana A Branco: iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
  2. Joaquim M S Cabral: iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal. ORCID
  3. Maria Margarida Diogo: iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.

Abstract

The knowledge acquired throughout the years concerning the in vivo regulation of cardiac development has promoted the establishment of directed differentiation protocols to obtain cardiomyocytes (CMs) and other cardiac cells from human pluripotent stem cells (hPSCs), which play a crucial role in the function and homeostasis of the heart. Among other developments in the field, the transition from homogeneous cultures of CMs to more complex multicellular cardiac microtissues (MTs) has increased the potential of these models for studying cardiac disorders in vitro and for clinically relevant applications such as drug screening and cardiotoxicity tests. This review addresses the state of the art of the generation of different cardiac cells from hPSCs and the impact of transitioning CM differentiation from 2D culture to a 3D environment. Additionally, current methods that may be employed to generate 3D cardiac MTs are reviewed and, finally, the adoption of these models for in vitro applications and their adaptation to medium- to high-throughput screening settings are also highlighted.

Keywords

References

  1. Development. 2008 Mar;135(6):1157-67 [PMID: 18272591]
  2. Nucleic Acids Res. 2016 Jan 4;44(D1):D1080-6 [PMID: 26553801]
  3. J Physiol. 2007 Jan 1;578(Pt 1):43-53 [PMID: 17038432]
  4. Dev Cell. 2019 Sep 23;50(6):729-743.e5 [PMID: 31402282]
  5. Pharmacol Ther. 2014 Mar;141(3):235-49 [PMID: 24140081]
  6. Stem Cell Reports. 2018 Mar 13;10(3):834-847 [PMID: 29503093]
  7. Toxicol Sci. 2019 Nov 1;172(1):89-97 [PMID: 31385592]
  8. Stem Cell Reports. 2020 May 12;14(5):770-787 [PMID: 32359445]
  9. Development. 2017 Mar 15;144(6):1118-1127 [PMID: 28174241]
  10. Stem Cell Reports. 2016 Oct 11;7(4):802-816 [PMID: 27693424]
  11. Nat Methods. 2014 Aug;11(8):847-54 [PMID: 24973948]
  12. Sci Rep. 2018 Jul 5;8(1):10160 [PMID: 29976997]
  13. Dev Cell. 2003 Dec;5(6):877-89 [PMID: 14667410]
  14. Sci Rep. 2017 Aug 1;7(1):7005 [PMID: 28765558]
  15. Eur Heart J. 2020 Apr 7;41(14):1414-1429 [PMID: 31637441]
  16. Cell Stem Cell. 2016 Mar 3;18(3):341-53 [PMID: 26748419]
  17. Sci Rep. 2020 Apr 24;10(1):6919 [PMID: 32332814]
  18. Annu Rev Pharmacol Toxicol. 2020 Jan 6;60:529-551 [PMID: 31506008]
  19. Nat Protoc. 2017 Jan;12(1):15-31 [PMID: 27906170]
  20. Cell Res. 2011 Apr;21(4):579-87 [PMID: 21102549]
  21. Tissue Eng Part A. 2011 Aug;17(15-16):1901-9 [PMID: 21417693]
  22. Stem Cells Dev. 2012 Jun 10;21(9):1513-23 [PMID: 21933026]
  23. Physiol Rev. 2003 Jan;83(1):59-115 [PMID: 12506127]
  24. J Mol Cell Cardiol. 2020 Jan;138:1-11 [PMID: 31655038]
  25. Cell Stem Cell. 2011 Feb 4;8(2):228-40 [PMID: 21295278]
  26. Nat Biomed Eng. 2016;1: [PMID: 28462012]
  27. Cell Stem Cell. 2019 Jun 6;24(6):895-907.e6 [PMID: 30930147]
  28. Toxicol Sci. 2020 Jul 1;176(1):103-123 [PMID: 32421822]
  29. Cell Stem Cell. 2014 Feb 6;14(2):237-52 [PMID: 24412311]
  30. Cell. 2016 Jul 14;166(2):451-467 [PMID: 27419872]
  31. BMC Med. 2016 Feb 04;14:10 [PMID: 26843061]
  32. Nat Protoc. 2014 Apr;9(4):929-38 [PMID: 24675733]
  33. Biotechnol Bioeng. 2018 Aug;115(8):1958-1970 [PMID: 29663322]
  34. Nat Biotechnol. 2014 Oct;32(10):1026-35 [PMID: 25240927]
  35. Genesis. 2007 Jul;45(7):470-5 [PMID: 17610275]
  36. Nat Commun. 2019 May 20;10(1):2238 [PMID: 31110246]
  37. J Pharmacol Toxicol Methods. 2016 Sep-Oct;81:201-16 [PMID: 27282640]
  38. Curr Cardiol Rep. 2020 Jun 27;22(8):73 [PMID: 32594263]
  39. Biomaterials. 2012 Mar;33(7):2041-9 [PMID: 22177620]
  40. Toxicol Sci. 2015 Dec;148(2):503-16 [PMID: 26358003]
  41. Cell Stem Cell. 2020 Jun 4;26(6):862-879.e11 [PMID: 32459996]
  42. Development. 2015 Sep 15;142(18):3198-209 [PMID: 26153229]
  43. Dev Biol. 1999 Jul 1;211(1):100-8 [PMID: 10373308]
  44. Cell. 2019 Feb 7;176(4):913-927.e18 [PMID: 30686581]
  45. PLoS One. 2011;6(10):e26397 [PMID: 22028871]
  46. Nat Rev Cardiol. 2017 Aug;14(8):484-491 [PMID: 28436487]
  47. Circulation. 2019 Apr 9;139(15):1786-1797 [PMID: 30700137]
  48. EMBO Mol Med. 2015 Feb 19;7(4):394-410 [PMID: 25700171]
  49. AIChE J. 2014 Apr;60(4):1225-1235 [PMID: 25505348]
  50. Stem Cells Dev. 2017 Apr 1;26(7):528-540 [PMID: 27927069]
  51. Nat Biotechnol. 2017 Jan;35(1):56-68 [PMID: 27941801]
  52. Circulation. 2017 May 9;135(19):1832-1847 [PMID: 28167635]
  53. Sci Rep. 2019 Dec 18;9(1):19389 [PMID: 31852937]
  54. Proc Natl Acad Sci U S A. 2008 Feb 26;105(8):2913-8 [PMID: 18287057]
  55. Stem Cells Transl Med. 2015 Dec;4(12):1482-94 [PMID: 26511653]
  56. Nat Commun. 2018 Aug 7;9(1):3140 [PMID: 30087351]
  57. Stem Cells. 2015 May;33(5):1456-69 [PMID: 25639979]
  58. Nat Protoc. 2018 Dec;13(12):3018-3041 [PMID: 30413796]
  59. Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):E8372-E8381 [PMID: 28916735]
  60. Nat Cell Biol. 2013 Sep;15(9):1098-106 [PMID: 23974038]
  61. Cell Stem Cell. 2019 Sep 5;25(3):311-327 [PMID: 31491395]
  62. Sci Rep. 2017 Jul 13;7(1):5268 [PMID: 28706272]
  63. Biofabrication. 2017 May 11;9(2):025011 [PMID: 28393762]
  64. Nat Cell Biol. 2015 Aug;17(8):994-1003 [PMID: 26214132]
  65. PLoS One. 2011 Apr 08;6(4):e18293 [PMID: 21494607]
  66. Nat Methods. 2014 Aug;11(8):855-60 [PMID: 24930130]
  67. Cells. 2020 May 07;9(5): [PMID: 32392813]
  68. Cell Rep. 2018 Jan 9;22(2):546-556 [PMID: 29320747]
  69. Stem Cell Reports. 2018 Mar 13;10(3):808-821 [PMID: 29456182]
  70. Cell Stem Cell. 2019 May 2;24(5):802-811.e5 [PMID: 30880024]
  71. Toxicol Sci. 2013 Apr;132(2):317-26 [PMID: 23315586]
  72. Nature. 2018 Apr;556(7700):239-243 [PMID: 29618819]
  73. Acta Biomater. 2019 Jul 1;92:145-159 [PMID: 31075518]
  74. Nat Commun. 2016 Dec 09;7:13602 [PMID: 27934856]
  75. Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):16978-83 [PMID: 19805103]
  76. Stem Cell Res Ther. 2015 Dec 30;6:261 [PMID: 26718617]
  77. Cardiovasc Res. 2005 Jan 1;65(1):40-51 [PMID: 15621032]
  78. Front Cell Dev Biol. 2020 May 15;8:309 [PMID: 32509776]
  79. Herzschrittmacherther Elektrophysiol. 2018 Mar;29(1):62-69 [PMID: 29392412]
  80. Sci Rep. 2017 Aug 18;7(1):8837 [PMID: 28821762]
  81. Sci Rep. 2017 Jul 14;7(1):5464 [PMID: 28710467]
  82. Mol Ther. 2018 Jul 5;26(7):1644-1659 [PMID: 29606507]
  83. Stem Cells. 2008 Sep;26(9):2300-10 [PMID: 18583540]
  84. Nat Protoc. 2014;9(6):1514-31 [PMID: 24874816]
  85. Toxicol Sci. 2016 Jul;152(1):99-112 [PMID: 27125969]
  86. Stem Cell Res. 2017 Mar;19:94-103 [PMID: 28110125]
  87. FASEB J. 2014 Feb;28(2):644-54 [PMID: 24174427]
  88. Stem Cell Reports. 2018 Sep 11;11(3):828-841 [PMID: 30122443]
  89. Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):656-61 [PMID: 26739565]
  90. Stem Cell Reports. 2018 Dec 11;11(6):1378-1390 [PMID: 30416051]
  91. Sci Rep. 2016 Apr 20;6:24726 [PMID: 27095412]
  92. Stem Cell Reports. 2017 Apr 11;8(4):907-918 [PMID: 28343999]
  93. Stem Cell Reports. 2017 Nov 14;9(5):1560-1572 [PMID: 29033305]
  94. J Clin Invest. 2014 Jul;124(7):2921-34 [PMID: 24937432]
  95. Circ Res. 2018 Feb 2;122(3):e5-e16 [PMID: 29282212]
  96. Stem Cell Reports. 2014 Dec 9;3(6):1132-46 [PMID: 25454631]
  97. Biomaterials. 2010 Mar;31(7):1885-93 [PMID: 19945747]
  98. Circ Res. 2017 Mar 17;120(6):941-959 [PMID: 28302741]
  99. Sci Rep. 2019 Jun 25;9(1):9229 [PMID: 31239450]
  100. Stem Cell Reports. 2019 Aug 13;13(2):366-379 [PMID: 31353227]
  101. Nat Biomed Eng. 2020 Apr;4(4):446-462 [PMID: 32284552]
  102. Cell Stem Cell. 2017 Aug 3;21(2):179-194.e4 [PMID: 28777944]
  103. Front Physiol. 2017 Oct 11;8:766 [PMID: 29075196]
  104. Dev Cell. 2004 May;6(5):685-98 [PMID: 15130493]
  105. Bioengineering (Basel). 2018 Jun 21;5(3): [PMID: 29933623]
  106. Stem Cell Reports. 2018 Jun 5;10(6):1851-1866 [PMID: 29706502]
  107. Development. 2017 Mar 15;144(6):1008-1017 [PMID: 28279973]
  108. Cell Rep. 2019 Feb 12;26(7):1934-1950.e5 [PMID: 30759401]
  109. Development. 2015 Apr 15;142(8):1528-41 [PMID: 25813541]
  110. PLoS One. 2011;6(8):e23657 [PMID: 21876760]
  111. Stem Cells. 2007 Apr;25(4):929-38 [PMID: 17185609]
  112. Stem Cells. 2017 Apr;35(4):909-919 [PMID: 28248004]
  113. Circulation. 2016 Nov 15;134(20):1557-1567 [PMID: 27737958]
  114. Stem Cell Res. 2014 Sep;13(2):202-13 [PMID: 25043964]
  115. Biosensors (Basel). 2017 Jun 23;7(3): [PMID: 28644395]
  116. Dis Model Mech. 2017 Sep 1;10(9):1039-1059 [PMID: 28883014]
  117. Tissue Eng Part C Methods. 2020 Feb;26(2):80-90 [PMID: 31830863]
  118. Nat Methods. 2015 Jul;12(7):595-6 [PMID: 26125590]
  119. Stem Cells Transl Med. 2014 Dec;3(12):1473-83 [PMID: 25355733]
  120. Nat Commun. 2019 Sep 20;10(1):4325 [PMID: 31541103]
  121. Nat Protoc. 2013 Nov;8(11):2135-57 [PMID: 24113786]
  122. Cardiovasc Res. 2010 Jul 1;87(1):92-101 [PMID: 20110338]
  123. Dev Cell. 2012 Mar 13;22(3):639-50 [PMID: 22421048]
  124. Circ Res. 2016 Feb 5;118(3):400-9 [PMID: 26635390]
  125. Stem Cell Reports. 2018 Dec 11;11(6):1365-1377 [PMID: 30540961]
  126. PLoS One. 2016 Jan 19;11(1):e0146697 [PMID: 26784941]
  127. Trends Cardiovasc Med. 2004 Apr;14(3):83-93 [PMID: 15121155]
  128. Front Cell Dev Biol. 2020 Mar 19;8:178 [PMID: 32266260]
  129. Stem Cell Reports. 2016 Jul 12;7(1):29-42 [PMID: 27211213]
  130. Cell Stem Cell. 2021 Dec 2;28(12):2137-2152.e6 [PMID: 34861147]
  131. Stem Cell Res. 2015 Sep;15(2):365-75 [PMID: 26318718]
  132. Br J Pharmacol. 2017 Nov;174(21):3749-3765 [PMID: 27641943]
  133. Cell Rep. 2016 Jul 26;16(4):1026-1038 [PMID: 27396331]
  134. Nat Commun. 2015 Jul 14;6:7413 [PMID: 26172574]
  135. Cell Res. 2014 Jul;24(7):820-41 [PMID: 24810299]
  136. Dev Biol. 2005 Nov 1;287(1):134-45 [PMID: 16188249]
  137. EMBO Mol Med. 2019 Dec;11(12):e11115 [PMID: 31680489]
  138. Circ Res. 2012 Oct 12;111(9):1125-36 [PMID: 22912385]
  139. Biotechnol Bioeng. 2009 Feb 1;102(2):493-507 [PMID: 18767184]
  140. Biomaterials. 2017 Oct;142:112-123 [PMID: 28732246]
  141. Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):E1848-57 [PMID: 22645348]
  142. Biomaterials. 2013 Mar;34(10):2463-71 [PMID: 23332176]

Grants

  1. PTDC/EMD-TLM/29728/2017/Fundação para a Ciência e Tecnologia (FCT)
  2. UIDB/04565/2020/Fundação para a Ciência e a Tecnologia (FCT)

Word Cloud

Created with Highcharts 10.0.0cardiaccells3DdifferentiationhPSCsMTsscreeningCMshumanpluripotentstemheartmicrotissuesmodelsvitroapplicationsdrugcardiotoxicityCMengineeredknowledgeacquiredthroughoutyearsconcerningvivoregulationdevelopmentpromotedestablishmentdirectedprotocolsobtaincardiomyocytesplaycrucialrolefunctionhomeostasisAmongdevelopmentsfieldtransitionhomogeneousculturescomplexmulticellularincreasedpotentialstudyingdisordersclinicallyrelevanttestsreviewaddressesstateartgenerationdifferentimpacttransitioning2DcultureenvironmentAdditionallycurrentmethodsmayemployedgeneratereviewedfinallyadoptionadaptationmedium-high-throughputsettingsalsohighlightedHumanPluripotentStemCellsCardiacMicrotissues:ProgressApplicationsChallengescardiomyocytediseasemodelingplatformstissuesEHThPSC-derived

Similar Articles

Cited By