Brachyury Is Associated with Glioma Differentiation and Response to Temozolomide.

Filipe Pinto, Ângela M Costa, Raquel P Andrade, Rui Manuel Reis
Author Information
  1. Filipe Pinto: Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
  2. Ângela M Costa: Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
  3. Raquel P Andrade: Centre for Biomedical Research - CBMR, University of Algarve, 8005-139, Faro, Portugal.
  4. Rui Manuel Reis: Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal. rreis@med.uminho.pt. ORCID

Abstract

Glioblastomas (GBMs) are the most aggressive tumor type of the central nervous system, mainly due to their high invasiveness and innate resistance to radiotherapy and chemotherapy, with temozolomide (TMZ) being the current standard therapy. Recently, brachyury was described as a novel tumor suppressor gene in gliomas, and its loss was associated with increased gliomagenesis. Here, we aimed to explore the role of brachyury as a suppressor of glioma invasion, stem cell features, and resistance to TMZ. Using gene-edited glioma cells to overexpress brachyury, we found that brachyury-positive cells exhibit reduced invasive and migratory capabilities and stem cell features. Importantly, these brachyury-expressing cells have increased expression of differentiation markers, which corroborates the results from human glioma samples and in vivo tumors. Glioma cells treated with retinoic acid increased the differentiation status with concomitant increased expression of brachyury. We then selected TMZ-resistant (SNB-19) and TMZ-responsive (A172 and U373) cell lines to evaluate the role of brachyury in the response to TMZ treatment. We observed that both exogenous and endogenous brachyury activation, through overexpression and retinoic acid treatment, are associated with TMZ sensitization in glioma-resistant cell lines. In this study, we demonstrate that brachyury expression can impair aggressive glioma features associated with treatment resistance. Finally, we provide the first evidence that brachyury can be a potential therapeutic target in GBM patients who do not respond to conventional chemotherapeutic drugs.

Keywords

References

  1. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 2016; 131: 803-820. [DOI: 10.1007/s00401-016-1545-1]
  2. Louis DN, Aldape K, Brat DJ, et al. Announcing cIMPACT-NOW: the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy. Acta Neuropathol 2017; 133: 1-3. [DOI: 10.1007/s00401-016-1646-x]
  3. Zhang H, Wang R, Yu Y, et al. Glioblastoma Treatment Modalities besides Surgery. J Cancer 2019; 10: 4793-4806. [DOI: 10.7150/jca.32475]
  4. Thomas AA, Brennan CW, DeAngelis LM, et al. Emerging therapies for glioblastoma. JAMA Neurol 2014; 71: 1437-1444. [DOI: 10.1001/jamaneurol.2014.1701]
  5. Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444: 756-760. [DOI: 10.1038/nature05236]
  6. Prieto-Vila M, Takahashi RU, Usuba W, et al. Drug resistance driven by cancer stem cells and their niche. Int J Mol Sci 2017; 18.
  7. Wang SS, Jiang J, Liang XH, et al. Links between cancer stem cells and epithelial-mesenchymal transition. Onco Targets Ther 2015; 8: 2973-2980. [PMID: 26527883]
  8. Pinto F, Pertega-Gomes N, Pereira MS, et al. T-box transcription factor brachyury is associated with prostate cancer progression and aggressiveness. Clin Cancer Res 2014; 20: 4949-4961. [DOI: 10.1158/1078-0432.CCR-14-0421]
  9. Pinto F, Campanella NC, Abrahao-Machado LF, et al. The embryonic Brachyury transcription factor is a novel biomarker of GIST aggressiveness and poor survival. Gastric Cancer 2016; 19: 651-659. [DOI: 10.1007/s10120-015-0505-0]
  10. Pinto F, Carcano FM, da Silva ECA, et al. Brachyury oncogene is a prognostic factor in high-risk testicular germ cell tumors. Andrology 2018; 6: 597-604. [DOI: 10.1111/andr.12495]
  11. Fernando RI, Litzinger M, Trono P, et al. The T-box transcription factor brachyury promotes epithelial-mesenchymal transition in human tumor cells. J Clin Invest 2010; 120: 533-544. [DOI: 10.1172/JCI38379]
  12. Du R, Wu S, Lv X, et al. Overexpression of brachyury contributes to tumor metastasis by inducing epithelial-mesenchymal transition in hepatocellular carcinoma. J Exp Clin Cancer Res 2014; 33: 105. [DOI: 10.1186/s13046-014-0105-6]
  13. Yang XR, Ng D, Alcorta DA, et al. T (brachyury) gene duplication confers major susceptibility to familial chordoma. Nat Genet 2009; 41: 1176-1178. [DOI: 10.1038/ng.454]
  14. Palena C, Roselli M, Litzinger MT, et al. Overexpression of the EMT driver brachyury in breast carcinomas: association with poor prognosis. J Natl Cancer Inst 2014; 106.
  15. Kilic N, Feldhaus S, Kilic E, et al. Brachyury expression predicts poor prognosis at early stages of colorectal cancer. Eur J Cancer 2011; 47: 1080-1085. [DOI: 10.1016/j.ejca.2010.11.015]
  16. Haro A, Yano T, Kohno M, et al. Expression of brachyury gene is a significant prognostic factor for primary lung carcinoma. Ann Surg Oncol 2013; 20 Suppl 3: S509-516. [DOI: 10.1245/s10434-013-2914-9]
  17. Shimoda M, Sugiura T, Imajyo I, et al. The T-box transcription factor brachyury regulates epithelial-mesenchymal transition in association with cancer stem-like cells in adenoid cystic carcinoma cells. BMC Cancer 2012; 12: 377. [DOI: 10.1186/1471-2407-12-377]
  18. Jezkova J, Williams JS, Pinto F, et al. Brachyury identifies a class of enteroendocrine cells in normal human intestinal crypts and colorectal cancer. Oncotarget 2016; 7: 11478-11486. [DOI: 10.18632/oncotarget.7202]
  19. Pinto F, Pertega-Gomes N, Vizcaino JR, et al. Brachyury as a potential modulator of androgen receptor activity and a key player in therapy resistance in prostate cancer. Oncotarget 2016; 7: 28891-28902. [DOI: 10.18632/oncotarget.8499]
  20. Sarkar D, Shields B, Davies ML, et al. Brachyury confers cancer stem cell characteristics on colorectal cancer cells. Int J Cancer 2012; 130: 328-337. [DOI: 10.1002/ijc.26029]
  21. Kobayashi Y, Sugiura T, Imajyo I, et al. Knockdown of the T-box transcription factor Brachyury increases sensitivity of adenoid cystic carcinoma cells to chemotherapy and radiation in vitro: implications for a new therapeutic principle. Int J Oncol 2014; 44: 1107-1117. [DOI: 10.3892/ijo.2014.2292]
  22. Huang B, Cohen JR, Fernando RI, et al. The embryonic transcription factor brachyury blocks cell cycle progression and mediates tumor resistance to conventional antitumor therapies. Cell Death Dis 2013; 4: e682. [DOI: 10.1038/cddis.2013.208]
  23. Heery CR, Singh BH, Rauckhorst M, et al. Phase I trial of a yeast-based therapeutic cancer vaccine (GI-6301) targeting the transcription factor brachyury. Cancer Immunol Res 2015; 3: 1248-1256. [DOI: 10.1158/2326-6066.CIR-15-0119]
  24. Heery CR, Palena C, McMahon S, et al. Phase I study of a poxviral TRICOM-based vaccine directed against the transcription factor brachyury. Clin Cancer Res 2017; 23: 6833-6845. [DOI: 10.1158/1078-0432.CCR-17-1087]
  25. Hamilton DH, Litzinger MT, Jales A, et al. Immunological targeting of tumor cells undergoing an epithelial-mesenchymal transition via a recombinant brachyury-yeast vaccine. Oncotarget 2013; 4: 1777-1790. [DOI: 10.18632/oncotarget.1295]
  26. Gatti-Mays ME, Redman JM, Donahue RN, et al. A phase I trial using a multitargeted recombinant adenovirus 5 (CEA/MUC1/brachyury)-based immunotherapy vaccine regimen in patients with advanced cancer. Oncologist 2019, https://doi.org/10.1634/theoncologist.2019-0608 .
  27. Pinto F, Costa AM, Santos GC, et al. The T-box transcription factor brachyury behaves as a tumor suppressor in gliomas. J Pathol 2020, https://doi.org/10.1002/path.5419 .
  28. Martinho O, Pinto F, Granja S, et al. RKIP inhibition in cervical cancer is associated with higher tumor aggressive behavior and resistance to cisplatin therapy. PLoS One 2013; 8: e59104. [DOI: 10.1371/journal.pone.0059104]
  29. Pereira MS, Celeiro SP, Costa AM, et al. Loss of SPINT2 expression frequently occurs in glioma, leading to increased growth and invasion via MMP2. Cell Oncol (Dordr) 2020; 43: 107-121. [DOI: 10.1007/s13402-019-00475-7]
  30. Costa AM, Pinto F, Martinho O, et al. Silencing of the tumor suppressor gene WNK2 is associated with upregulation of MMP2 and JNK in gliomas. Oncotarget 2015; 6: 1422-1434. [DOI: 10.18632/oncotarget.2805]
  31. Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013; 6: pl1.
  32. Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012; 2: 401-404. [DOI: 10.1158/2159-8290.CD-12-0095]
  33. Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009; 37: 1-13.
  34. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44-57.
  35. Gaspar N, Marshall L, Perryman L, et al. MGMT-independent temozolomide resistance in pediatric glioblastoma cells associated with a PI3-kinase-mediated HOX/stem cell gene signature. Cancer Res 2010; 70: 9243-9252. [DOI: 10.1158/0008-5472.CAN-10-1250]
  36. Jezkova J, Williams JS, Jones-Hutchins F, et al. Brachyury regulates proliferation of cancer cells via a p27Kip1-dependent pathway. Oncotarget 2014; 5: 3813-3822. [DOI: 10.18632/oncotarget.1999]
  37. Janesick A, Wu SC, Blumberg B. Retinoic acid signaling and neuronal differentiation. Cell Mol Life Sci 2015; 72: 1559-1576. [DOI: 10.1007/s00018-014-1815-9]
  38. Shi L, Li H, Zhan Y. All-trans retinoic acid enhances temozolomide-induced autophagy in human glioma cells U251 via targeting Keap1/Nrf2/ARE signaling pathway. Oncol Lett 2017; 14: 2709-2714. [DOI: 10.3892/ol.2017.6482]
  39. Pitz MW, Lipson M, Hosseini B, et al. Extended adjuvant temozolomide with cis-retinoic acid for adult glioblastoma. Curr Oncol 2012; 19: 308-314. [DOI: 10.3747/co.19.1151]
  40. Jaeckle KA, Hess KR, Yung WK, et al. Phase II evaluation of temozolomide and 13-cis-retinoic acid for the treatment of recurrent and progressive malignant glioma: a North American Brain Tumor Consortium study. J Clin Oncol 2003; 21: 2305-2311. [DOI: 10.1200/JCO.2003.12.097]
  41. See SJ, Levin VA, Yung WK, et al. 13-cis-Retinoic acid in the treatment of recurrent glioblastoma multiforme. Neuro Oncol 2004; 6: 253-258. [DOI: 10.1215/S1152851703000607]

MeSH Term

Antineoplastic Agents, Alkylating
Brain Neoplasms
Cell Differentiation
Cell Line, Tumor
Cell Movement
Fetal Proteins
Glioma
Humans
Neoplasm Invasiveness
T-Box Domain Proteins
Temozolomide
Brachyury Protein

Chemicals

Antineoplastic Agents, Alkylating
Fetal Proteins
T-Box Domain Proteins
Brachyury Protein
Temozolomide

Word Cloud

Created with Highcharts 10.0.0brachyuryTMZincreasedgliomacellcellsresistanceassociatedstemfeaturesexpressiontreatmentaggressivetumortemozolomidetherapysuppressorroledifferentiationGliomaretinoicacidlinescanGlioblastomasGBMstypecentralnervoussystemmainlyduehighinvasivenessinnateradiotherapychemotherapycurrentstandardRecentlydescribednovelgenegliomaslossgliomagenesisaimedexploreinvasionUsinggene-editedoverexpressfoundbrachyury-positiveexhibitreducedinvasivemigratorycapabilitiesImportantlybrachyury-expressingmarkerscorroboratesresultshumansamplesvivotumorstreatedstatusconcomitantselectedTMZ-resistantSNB-19TMZ-responsiveA172U373evaluateresponseobservedexogenousendogenousactivationoverexpressionsensitizationglioma-resistantstudydemonstrateimpairFinallyprovidefirstevidencepotentialtherapeutictargetGBMpatientsrespondconventionalchemotherapeuticdrugsBrachyuryAssociatedDifferentiationResponseTemozolomideEMTGliomasTBXT

Similar Articles

Cited By