Molecular fluorescence spectroscopy with multi-way analysis techniques detects spectral variations distinguishing uninfected serum versus dengue or chikungunya viral infected samples.

Marfran C D Santos, Joelma D Monteiro, Josélio M G Araújo, Kássio M G Lima
Author Information
  1. Marfran C D Santos: Biological Chemistry and Chemometrics, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, 59072-970, Brazil.
  2. Joelma D Monteiro: Laboratory of Molecular Biology for Infectious Diseases and Cancer, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, 59072-970, Natal, Brazil.
  3. Josélio M G Araújo: Laboratory of Molecular Biology for Infectious Diseases and Cancer, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, 59072-970, Natal, Brazil.
  4. Kássio M G Lima: Biological Chemistry and Chemometrics, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, 59072-970, Brazil. kassiolima@gmail.com.

Abstract

Significant attempts are being made worldwide in an attempt to develop a tool that, with a simple analysis, is capable of distinguishing between different arboviruses. Herein, we employ molecular fluorescence spectroscopy as a sensitive and specific rapid tool, with simple methodology response, capable of identifying spectral variations between serum samples with or without the dengue or chikungunya viruses. Towards this, excitation emission matrices (EEM) of clinical samples from patients with dengue or chikungunya, in addition to uninfected controls, were separated into a training or test set and analysed using multi-way classification models such as n-PLSDA, PARAFAC-LDA and PARAFAC-QDA. Results were evaluated based on calculations of accuracy, sensitivity, specificity and F score; the most efficient model was identified to be PARAFAC-QDA, whereby 100% was obtained for all figures of merit. QDA was able to predict all samples in the test set based on the scores present in the factors selected by PARAFAC. The loadings obtained by PARAFAC can be used in future studies to prove the direct or indirect relationship of spectral changes caused by the presence of these viruses. This study demonstrates that molecular fluorescence spectroscopy has a greater capacity to detect spectral variations related to the presence of such viruses when compared to more conventional techniques.

References

  1. JA Boga 2019 Simultaneous detection of dengue virus, chikungunya virus, zika virus, yellow fever virus and west nile vírus J. Virol. Methods 268 53 55 [PMID: 30930286]
  2. MG Guzman 2010 Dengue: A continuing global threat Nat. Rev. Microbiol. 8 S7 S16 [PMID: 21079655]
  3. Febre Chikungunya: Manejo clínico, Ministério da saúde https://www.saude.gov.br/images/pdf/2017/maio/31/chikungunya_manejo_clinico_2017.pdf (2017).
  4. L Furuya-Kanamori 2016 Co-distribution and co-infection of chikungunya and dengue viruses BMC Infect. Dis. 16 1 11
  5. N Boonham 2014 Methods in virus diagnostics: From ELISA to next generation sequencing Virus Res. 186 20 31 [PMID: 24361981]
  6. W Dejnirattisai 2016 Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus Nat. Immunol. 17 1102 1108 [PMID: 27339099]
  7. AB Kawiecki RC Christofferson 2016 Zika-induced antibody response enhances dengue serotype 2 replication in vitro J. Infect. Dis. 214 1357 1360 [PMID: 27521359]
  8. MJ Cabral-Castro MG Cavalcanti RHS Peralta JM Peralta 2016 Molecular and serological techniques to detect co-circulation of DENV, ZIKV and CHIKV in suspected dengue-like syndrome patients J. Clin. Virol. 82 108 111 [PMID: 27479173]
  9. JMG Araújo G Bello HG Schatzmayr FB Santos RMR Nogueira 2009 Dengue virus type 3 in Brazil: A phylogenetic perspective Mem. Inst. Oswaldo Cruz. 104 526 529 [PMID: 19547883]
  10. MG Guzman G Kourí 2004 Dengue diagnosis, advances and challenges Int. J. Infect. Dis. 8 69 80 [PMID: 14732325]
  11. RS Lanciotti CH Calisher DJ Gubler G Chang AV Vorndam 1992 Rapid Detection and typing of dengue viruses from clinical samples by using reverse transcriptase–polymerase chain reaction J. Clin. Microbiol. 30 545 551 [PMID: 1372617]
  12. RS Lanciotti 2007 Chikungunya virus in US travelers returning from India, 2006 Emerg. Infect. Dis. 13 764 767 [PMID: 17553261]
  13. AR Plourde EM Bloch 2016 A literature review of zika virus Emerg. Infect. Dis. 22 1185 1192 [PMID: 27070380]
  14. EB Hayes 2009 Zika virus outside Africa Emerg. Infect. Dis. 15 1347 1350 [PMID: 19788800]
  15. HS Lindsey CH Calisher JH Mathews 1976 Serum dilution neutralization test for California group virus identification and serology J. Clin. Microbiol. 4 503 510 [PMID: 1002829]
  16. Sousa, A. R. V. Avaliação sorológica e molecular de pacientes com quadro clínico de dengue símile atendidos no hospital das forças armadas. https://repositorio.bc.ufg.br/tede/bitstream/tede/9468/5/Disserta%C3%A7%C3%A3o%20-%20Adriano%20Roberto%20Vieira%20de%20Sousa%20-%202019.pdf (2019).
  17. Tool for the diagnosis and care of patients with suspected arboviral diseases, Pan American Health Organization. https://iris.paho.org/xmlui/bitstream/handle/123456789/33895/9789275119365_eng.pdf?sequence=1&isAllowed=y (2017).
  18. MCD Santos 2018 ATR-FTIR spectroscopy with chemometric algorithms of multivariate classification in the discrimination between healthy vs dengue vs chikungunya vs zika clinical samples Anal. Methods. 10 1280 1285
  19. MCD Santos YM Nascimento JMG Araújo KMG Lima 2017 ATR-FTIR spectroscopy coupled with multivariate analysis techniques for the identification of DENV-3 in different concentrations in blood and serum: A new approach RSC Adv. 7 25640 25649
  20. CA Stedmon R Bro 2008 Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial Limnol. Oceanogr. Methods. 9 572 579
  21. FSL Costa 2017 Comparison of multivariate classification algorithms using EEM fluorescence data to distinguish Cryptococcus neoformans and Cryptococcus gattii pathogenic fungi Anal. Methods. 9 3968 3976
  22. MW Conklin PP Provenzano KK Eliceiri R Sullivan PJ Keely 2009 Fluorescence lifetime imaging of endogenous fluorophores in histopathology sections reveals differences between normal and tumor epithelium in carcinoma in situ of the breast Cell Biochem. Biophys. 53 145 157 [PMID: 19259625]
  23. AP Teixeira 2009 In situ 2D fluorometry and chemometric monitoring of mammalian cell cultures Biotechnol. Bioeng. 102 1098 1106 [PMID: 18853411]
  24. LFS Siqueira RFA Júnior AA Araújo CLM Morais KMG Lima 2017 LDA vs QDA for FT-MIR prostate cancer tissue classification Chemom. Intell. Lab. Syst. 162 123 129
  25. MCD Santos CLM Morais YM Nascimento JMG Araujo KMG Lima 2017 Spectroscopy with computational analysis in virological studies: A decade (2006–2016) TrAC. 97 244 256 [PMID: 32287542]
  26. DA Skoog DM West FJ Holler SR Crouch 2017 Fundamentals of Analytical Chemistry 9 Cengage Learning Boston 753 761
  27. K Peck L Stryer AN Glazer RA Mathies 1989 Single-molecule fluorescence detection: Autocorrelation criterion and experimental realization with phycoerythrin Proc. Natl. Acad. Sci. USA 86 4087 4091 [PMID: 2726766]
  28. RW Peeling 2010 Evaluation of diagnostic tests: Dengue Nat. Rev. Microbiol. 8 S30 S37 [PMID: 21548185]
  29. Laboratory Biosafety Manual: 3rd Edition, World Health Organization. https://www.who.int/csr/resources/publications/biosafety/Biosafety7.pdf?ua=1 (2004).
  30. AM Mathew AB Mun A Balakrishnan 2018 Ultraviolet inactivation of chikungunya virus Intervirology 61 36 41 [PMID: 30048981]
  31. C Tseng C Li 2005 Inactivation of virus-containing aerosols by ultraviolet germicidal irradiation Aerosol. Sci. Technol. 39 1136 1142
  32. CLM Morais KMG Lima FL Martin 2019 TTWD-DA: A MATLAB toolbox for discriminant analysis based on trilinear three-way data Chemom. Intell. Lab. Syst. 188 46 53
  33. M Bahram R Bro C Stedmon A Afkhami 2006 Handling of Rayleigh and Raman scatter for PARAFAC modeling of fluorescence data using interpolation J. Chemom. 20 99 105
  34. RW Kennard LA Stone 1969 Computer aided design of experiments Technometrics 20 137 148
  35. CLM Morais MCD Santos KMG Lima FL Martin 2019 Improving data splitting for classification applications in spectrochemical analyses employing a random-mutation Kennard–Stone algorithm approach Bioinformatics 35 5257 5263 [PMID: 31116391]
  36. M Barker W Rayens 2003 Partial least squares for discrimination J. Chemom. 17 166 173
  37. RG Breretona GR Lloyd 2014 Partial least squares discriminant analysis: Taking the magic away J. Chemom. 28 213 225
  38. PS Gromski 2015 A tutorial review: Metabolomics and partial least squares-discriminant analysis—a marriage of convenience or a shotgun wedding Anal. Chim. Acta 879 10 23 [PMID: 26002472]
  39. SS Ouertani G Mazerolles J Boccard S Rudaz M Hanafi 2014 Multi-way PLS for discrimination: Compact form equivalent to the tri-linear PLS2 procedure and its monotony convergence Chemom. Intell. Lab. Syst. 133 25 32
  40. SM Azcarate AA Gomes AM Peña HC Goicoechea 2018 Modeling second-order data for classification issues: Data characteristics, algorithms, processing procedures and applications TrAC. 107 151 168
  41. RA Harshman ME Lundy 1994 PARAFAC: Parallel factor analysis Comput. Stat. Data Anal. 18 39 72
  42. R Bro 1997 PARAFAC. Tutorial and applications Chemom. Intell. Lab. Syst. 38 149 171
  43. CM Andersen R Bro 2003 Practical aspects of PARAFAC modeling of fluorescence excitation–emission data J. Chemom. 17 200 215
  44. KR Murphy CA Stedmon D Graeberc R Bro 2013 Fluorescence spectroscopy and multi-way techniques PARAFAC Anal. Methods. 5 6557 6566
  45. SJ Dixon RG Brereton 2009 Comparison of performance of five common classifiers represented as boundary methods: Euclidean distance to centroids, linear discriminant analysis, quadratic discriminant analysis, learning vector quantization and support vector machines, as dependent on data structure Chemom. Intell. Lab. Syst. 95 1 17

MeSH Term

Algorithms
Chikungunya Fever
Chikungunya virus
Computational Biology
Dengue
Dengue Virus
Humans
Least-Squares Analysis
Molecular Diagnostic Techniques
Principal Component Analysis
Sensitivity and Specificity
Serum
Spectrometry, Fluorescence
Viremia

Word Cloud

Created with Highcharts 10.0.0spectralsamplesfluorescencespectroscopyvariationsdenguechikungunyavirusestoolsimpleanalysiscapabledistinguishingmolecularserumuninfectedtestsetmulti-wayPARAFAC-QDAbasedobtainedPARAFACpresencetechniquesSignificantattemptsmadeworldwideattemptdevelopdifferentarbovirusesHereinemploysensitivespecificrapidmethodologyresponseidentifyingwithoutTowardsexcitationemissionmatricesEEMclinicalpatientsadditioncontrolsseparatedtraininganalysedusingclassificationmodelsn-PLSDAPARAFAC-LDAResultsevaluatedcalculationsaccuracysensitivityspecificityFscoreefficientmodelidentifiedwhereby100%figuresmeritQDAablepredictscorespresentfactorsselectedloadingscanusedfuturestudiesprovedirectindirectrelationshipchangescausedstudydemonstratesgreatercapacitydetectrelatedcomparedconventionalMoleculardetectsversusviralinfected

Similar Articles

Cited By