Schizasterid Heart Urchins Host Microorganisms in a Digestive Symbiosis of Mesozoic Origin.

Alexander Ziegler, Ariel M Gilligan, Jesse G Dillon, Bruno Pernet
Author Information
  1. Alexander Ziegler: Institut für Evolutionsbiologie und Ökologie, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany.
  2. Ariel M Gilligan: Department of Biological Sciences, California State University, Long Beach, CA, United States.
  3. Jesse G Dillon: Department of Biological Sciences, California State University, Long Beach, CA, United States.
  4. Bruno Pernet: Department of Biological Sciences, California State University, Long Beach, CA, United States.

Abstract

Because of their lifestyles, abundance, and feeding habits, infaunal marine deposit feeders have a significant impact on the ocean floor. As these animals also ingest microorganisms associated with their sediment and seawater diet, their digestive tract usually contains a diverse array of bacteria. However, while most of these microorganisms are transients, some may become part of a resident gut microbiome, in particular when sheltered from the main flow of digesta in specialized gut compartments. Here, we provide an in-depth analysis of the structure and contents of the intestinal caecum (IC), a hindgut diverticulum found exclusively in schizasterid heart urchins (Echinoidea: Spatangoida: Schizasteridae). Based on specimens of , in addition to various other schizasterid taxa, our structural characterization of the IC shows that the organ is a highly specialized gut compartment with unique structural properties. Next generation sequencing shows that the IC contains a microbial population composed predominantly of Bacteroidales, Desulfobacterales, and Spirochaetales. The microbiome of this gut compartment is significantly different in composition and lower in diversity than the microbial population in the sediment-filled main digestive tract. Inferences on the function and evolution of the IC and its microbiome suggest that this symbiosis plays a distinct role in host nutrition and that it evolved at least 66 million years ago during the final phase of the Mesozoic.

Keywords

References

  1. FEMS Microbiol Ecol. 2002 Dec 1;42(3):463-76 [PMID: 19709305]
  2. Nat Rev Microbiol. 2008 Oct;6(10):725-40 [PMID: 18794911]
  3. Microb Ecol. 1992 May;23(3):257-77 [PMID: 24192935]
  4. Appl Environ Microbiol. 2005 Dec;71(12):8228-35 [PMID: 16332807]
  5. Environ Microbiol. 2007 Jan;9(1):131-42 [PMID: 17227418]
  6. Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3229-36 [PMID: 23391737]
  7. Environ Microbiol Rep. 2015 Aug;7(4):614-22 [PMID: 25950866]
  8. Front Microbiol. 2018 Aug 13;9:1829 [PMID: 30150973]
  9. Nat Commun. 2016 Feb 03;7:10516 [PMID: 26839246]
  10. Environ Microbiol. 2016 May;18(5):1403-14 [PMID: 26271760]
  11. Appl Environ Microbiol. 1998 Mar;64(3):805-12 [PMID: 16349524]
  12. Appl Environ Microbiol. 2020 Jul 2;86(14): [PMID: 32358014]
  13. Annu Rev Ecol Evol Syst. 2019 Nov;50(1):451-475 [PMID: 32733173]
  14. Nucleic Acids Res. 2002 Jul 15;30(14):3059-66 [PMID: 12136088]
  15. Appl Environ Microbiol. 1998 Sep;64(9):3491-5 [PMID: 9726902]
  16. Appl Environ Microbiol. 2005 Dec;71(12):8811-7 [PMID: 16332877]
  17. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  18. Nucleic Acids Res. 2014 Jan;42(Database issue):D643-8 [PMID: 24293649]
  19. Appl Environ Microbiol. 1982 Mar;43(3):686-93 [PMID: 7073277]
  20. Int J Syst Evol Microbiol. 2016 Dec;66(12):5485-5492 [PMID: 27902269]
  21. Appl Environ Microbiol. 2004 Mar;70(3):1307-14 [PMID: 15006747]
  22. Science. 1999 Jan 29;283(5402):686-9 [PMID: 9924028]
  23. PLoS One. 2019 Jan 30;14(1):e0208011 [PMID: 30699110]
  24. Ecol Evol. 2018 May 24;8(12):6210-6225 [PMID: 29988407]
  25. Annu Rev Microbiol. 2015;69:145-66 [PMID: 26195303]
  26. Nat Rev Microbiol. 2013 Apr;11(4):227-38 [PMID: 23435359]
  27. Int J Syst Evol Microbiol. 2014 May;64(Pt 5):1690-1696 [PMID: 24523447]
  28. Am Nat. 2000 Apr;155(4):527-543 [PMID: 10753079]
  29. Annu Rev Microbiol. 2016 Sep 8;70:375-93 [PMID: 27482740]
  30. Int J Syst Evol Microbiol. 2008 May;58(Pt 5):1079-83 [PMID: 18450692]
  31. Antonie Van Leeuwenhoek. 2015 Apr;107(4):1049-56 [PMID: 25636945]
  32. FEMS Microbiol Lett. 2019 May 1;366(10): [PMID: 31132110]
  33. Gigascience. 2013 Nov 26;2(1):16 [PMID: 24280061]
  34. Gigascience. 2014 Oct 14;3:21 [PMID: 25356198]
  35. Front Microbiol. 2019 Nov 08;10:2576 [PMID: 31781072]
  36. Nat Methods. 2012 Jun 28;9(7):676-82 [PMID: 22743772]
  37. J Exp Biol. 2015 Jun;218(Pt 12):1968-73 [PMID: 26085673]
  38. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4516-22 [PMID: 20534432]
  39. Microb Ecol. 1989 Jul;18(1):29-44 [PMID: 24196019]
  40. Nature. 2018 Jun;558(7709):288-291 [PMID: 29849143]
  41. Oecologia. 1990 Jan;82(1):1-11 [PMID: 28313130]
  42. Environ Microbiol. 2012 Jan;14(1):4-12 [PMID: 22004523]
  43. Appl Environ Microbiol. 2003 May;69(5):2765-72 [PMID: 12732547]
  44. Sci Rep. 2016 Jun 06;6:27277 [PMID: 27263657]
  45. Biol Bull. 1996 Feb;190(1):24-44 [PMID: 29244544]
  46. Trans Am Microsc Soc. 1974 Apr;93(2):180-94 [PMID: 4598584]
  47. Appl Environ Microbiol. 2006 Jan;72(1):392-7 [PMID: 16391069]
  48. Methods Mol Biol. 2011;771:633-51 [PMID: 21874501]
  49. FEMS Microbiol Ecol. 2000 Oct 1;34(1):17-26 [PMID: 11053732]
  50. BMC Evol Biol. 2010 Oct 18;10:313 [PMID: 20955602]
  51. Nat Commun. 2011;2:311 [PMID: 21587228]
  52. PLoS One. 2014 Jun 26;9(6):e100092 [PMID: 24967593]
  53. Microb Ecol. 1993 May;25(3):195-231 [PMID: 24189919]
  54. Zookeys. 2017 Sep 14;(697):1-20 [PMID: 29134013]
  55. mBio. 2019 Nov 12;10(6): [PMID: 31719174]
  56. Arch Microbiol. 1985;142:317-25 [PMID: 11542001]
  57. Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):4684-9 [PMID: 25825727]
  58. Int J Syst Evol Microbiol. 2015 Nov;65(11):3872-3877 [PMID: 26243077]
  59. PLoS One. 2010 Mar 10;5(3):e9490 [PMID: 20224823]
  60. FEMS Microbiol Lett. 1997 Oct 15;155(2):185-91 [PMID: 9351200]
  61. Front Microbiol. 2015 Sep 16;6:989 [PMID: 26441918]
  62. Microbiome. 2018 May 17;6(1):90 [PMID: 29773078]
  63. Front Microbiol. 2016 Apr 05;7:458 [PMID: 27092120]
  64. Int J Syst Evol Microbiol. 2014 Aug;64(Pt 8):2907-2914 [PMID: 24876241]
  65. ISME J. 2013 Jan;7(1):50-60 [PMID: 22832344]
  66. Science. 2013 Feb 8;339(6120):684-7 [PMID: 23393261]
  67. Appl Environ Microbiol. 2000 Sep;66(9):3798-806 [PMID: 10966393]
  68. Proc Natl Acad Sci U S A. 2019 Nov 5;116(45):22500-22504 [PMID: 31636204]
  69. Front Microbiol. 2019 Jul 05;10:1548 [PMID: 31333634]
  70. Front Microbiol. 2020 Jul 22;11:1697 [PMID: 32793161]
  71. Nat Biotechnol. 2019 Aug;37(8):852-857 [PMID: 31341288]
  72. Front Microbiol. 2020 Feb 28;11:308 [PMID: 32184772]
  73. Int J Syst Evol Microbiol. 2013 Mar;63(Pt 3):959-964 [PMID: 22659505]
  74. Sci Rep. 2016 Feb 24;6:21631 [PMID: 26905381]

Grants

  1. RL5 GM118978/NIGMS NIH HHS
  2. TL4 GM118980/NIGMS NIH HHS
  3. UL1 GM118979/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0gutmicrobiomeICdigestivetractmicroorganismscontainsmainspecializedintestinalcaecumschizasteridstructuralshowscompartmentmicrobialpopulationMesozoiclifestylesabundancefeedinghabitsinfaunalmarinedepositfeederssignificantimpactoceanflooranimalsalsoingestassociatedsedimentseawaterdietusuallydiversearraybacteriaHowevertransientsmaybecomepartresidentparticularshelteredflowdigestacompartmentsprovidein-depthanalysisstructurecontentshindgutdiverticulumfoundexclusivelyhearturchinsEchinoidea:Spatangoida:SchizasteridaeBasedspecimensadditionvarioustaxacharacterizationorganhighlyuniquepropertiesNextgenerationsequencingcomposedpredominantlyBacteroidalesDesulfobacteralesSpirochaetalessignificantlydifferentcompositionlowerdiversitysediment-filledInferencesfunctionevolutionsuggestsymbiosisplaysdistinctrolehostnutritionevolvedleast66millionyearsagofinalphaseSchizasteridHeartUrchinsHostMicroorganismsDigestiveSymbiosisOriginBrisasterEchinoideaspirochete

Similar Articles

Cited By