Disruption of FGF Signaling Ameliorates Inflammatory Response in Hepatic Stellate Cells.

Cong Wang, Yuelong Li, Hao Li, Yali Zhang, Zhangguo Ying, Xuye Wang, Tingting Zhang, Wenshu Zhang, Zhichao Fan, Xiaokun Li, Jisheng Ma, Xuebo Pan
Author Information
  1. Cong Wang: School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
  2. Yuelong Li: School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
  3. Hao Li: School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
  4. Yali Zhang: School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
  5. Zhangguo Ying: School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
  6. Xuye Wang: School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
  7. Tingting Zhang: School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
  8. Wenshu Zhang: School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
  9. Zhichao Fan: School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
  10. Xiaokun Li: School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
  11. Jisheng Ma: School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
  12. Xuebo Pan: School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.

Abstract

It is a well-documented event that fibroblast growth factors (FGFs) regulate liver development and homeostasis in autocrine, paracrine, and endocrine manners via binding and activating FGF receptors (FGFRs) tyrosine kinase in hepatocytes. Recent research reveals that hepatic stellate cells (HSCs) play a fundamental role in liver immunology. However, how FGF signaling in HSCs regulates liver inflammation remains unclear. Here, we report that FGF promoted NF-κB signaling, an inflammatory pathway, in human HSCs, which was associated with FGFR1 expression. Both FGF and NF-κB signaling in HSCs were compromised by FGFR1 tyrosine kinase inhibitor. After stimulating HSCs with proinflammatory cytokines, expression of multiple FGF ligands was significantly increased. However, disruption of FGF signaling with FGFR inhibitors prominently reduced the apoptosis, inflammatory response, NF-κB nuclear translocation, and expression of matrix metalloproteinase-9 (MMP-9) induced by TNFα in HSCs. Interestingly, FGF21 significantly alleviated the inflammation responses in the concanavalin A (Con A)-induced acutely injured liver. Unlike canonic FGFs that elicit signals through activating the FGFR-heparan sulfate complex, FGF21 activates the FGFR-KLB complex and elicits a different set of signals. Therefore, the finding here indicates the urgency of developing pathway-specific inhibitors that only suppress canonical FGF, but not non-canonical FGF21, signaling for alleviating inflammation in the liver, which is presented in all stages of diseased liver.

Keywords

References

  1. Circ Res. 2012 Feb 17;110(4):e29-39 [PMID: 22207710]
  2. Hepatology. 2017 Jun;65(6):1875-1890 [PMID: 28073161]
  3. Cell Metab. 2019 Oct 1;30(4):833-844.e7 [PMID: 31474567]
  4. Nat Rev Gastroenterol Hepatol. 2017 Jul;14(7):397-411 [PMID: 28487545]
  5. J Cell Mol Med. 2018 Oct;22(10):5165-5169 [PMID: 30019838]
  6. Development. 2008 Feb;135(4):775-84 [PMID: 18184727]
  7. Semin Cell Dev Biol. 2016 May;53:155-67 [PMID: 26768548]
  8. Gut. 2017 May;66(5):939-954 [PMID: 28336518]
  9. EMBO J. 2003 Apr 15;22(8):1811-23 [PMID: 12682014]
  10. Cells. 2019 Nov 11;8(11): [PMID: 31718044]
  11. Hepatology. 2016 Dec;64(6):1951-1968 [PMID: 27531241]
  12. Stem Cells. 2007 Nov;25(11):2760-9 [PMID: 17641240]
  13. Genesis. 2007 Sep;45(9):554-9 [PMID: 17868091]
  14. J Hepatol. 2018 May;68(5):986-995 [PMID: 29366909]
  15. Matrix Biol. 2018 Aug;68-69:452-462 [PMID: 29221811]
  16. Oncogene. 2017 Jul 6;36(27):3831-3841 [PMID: 28263980]
  17. Biomed Pharmacother. 2016 May;80:183-192 [PMID: 27133055]
  18. Autophagy. 2012 Apr;8(4):690-1 [PMID: 22302007]
  19. Oncogene. 2017 Jul 6;36(27):3797-3806 [PMID: 28218905]
  20. J Hepatol. 2014 Feb;60(2):298-305 [PMID: 24060854]
  21. Endocr Relat Cancer. 2000 Sep;7(3):165-97 [PMID: 11021964]
  22. Cancer Res. 2007 Mar 15;67(6):2720-8 [PMID: 17363593]
  23. Clin Exp Pharmacol Physiol. 2019 Dec;46(12):1183-1193 [PMID: 31396972]
  24. Development. 2007 Feb;134(4):723-34 [PMID: 17215304]
  25. J Biol Chem. 2018 Sep 21;293(38):14839-14849 [PMID: 30093411]
  26. Physiol Res. 2016 Nov 8;65(4):661-672 [PMID: 27429124]
  27. Development. 2008 Nov;135(21):3611-22 [PMID: 18832393]
  28. Cell Death Dis. 2016 Nov 10;7(11):e2464 [PMID: 27831566]
  29. Hepatology. 2018 Jul;68(1):172-186 [PMID: 29328499]
  30. Int J Biochem Cell Biol. 2015 May;62:93-100 [PMID: 25748730]
  31. Front Cell Dev Biol. 2016 Apr 13;4:30 [PMID: 27148532]
  32. Bioessays. 2000 Feb;22(2):108-12 [PMID: 10655030]
  33. Front Biosci. 1999 Feb 15;4:D165-77 [PMID: 9989949]
  34. Curr Opin Struct Biol. 1998 Oct;8(5):578-86 [PMID: 9818261]
  35. Autophagy. 2017;13(11):1813-1827 [PMID: 29160747]
  36. Mol Cell Biol. 2011 Dec;31(24):4938-50 [PMID: 21969607]
  37. Front Genet. 2019 Jan 30;10:12 [PMID: 30761180]
  38. Mol Med Rep. 2019 Jul;20(1):162-170 [PMID: 31115530]
  39. Development. 2003 Jul;130(13):3063-74 [PMID: 12756187]
  40. Cells. 2019 Sep 27;8(10): [PMID: 31569788]
  41. J Clin Invest. 1992 Jul;90(1):196-203 [PMID: 1634608]
  42. Gastroenterology. 2018 Oct;155(4):1218-1232.e24 [PMID: 29964040]
  43. Biomolecules. 2019 Oct 24;9(11): [PMID: 31652997]
  44. Mol Med Rep. 2016 May;13(5):4266-72 [PMID: 27035424]
  45. Int J Biol Sci. 2011;7(8):1114-21 [PMID: 21927580]
  46. J Hepatol. 2016 Jan;64(1):110-7 [PMID: 26334580]
  47. Int J Biol Sci. 2014 Sep 06;10(9):1007-17 [PMID: 25210499]
  48. Gut. 2019 Dec;68(12):2214-2227 [PMID: 31171625]
  49. Cancer Res. 2018 Aug 15;78(16):4459-4470 [PMID: 29891507]
  50. J Biol Chem. 2004 Dec 31;279(53):55348-54 [PMID: 15513912]
  51. J Control Release. 2020 Mar 10;319:475-486 [PMID: 31838202]
  52. Int J Cancer. 2008 Aug 1;123(3):543-51 [PMID: 18498131]
  53. Inflammation. 2019 Dec;42(6):1957-1967 [PMID: 31321583]
  54. Hepatology. 1996 Mar;23(3):530-6 [PMID: 8617433]
  55. Circ Res. 2010 Nov 12;107(10):1209-19 [PMID: 20847311]

Word Cloud

Created with Highcharts 10.0.0FGFliverHSCssignalinginflammationNF-κBexpressionFGF21FGFsactivatingtyrosinekinasehepaticstellateHoweverinflammatoryFGFR1significantlyFGFRinhibitorssignalscomplexwell-documentedeventfibroblastgrowthfactorsregulatedevelopmenthomeostasisautocrineparacrineendocrinemannersviabindingreceptorsFGFRshepatocytesRecentresearchrevealscellsplayfundamentalroleimmunologyregulatesremainsunclearreportpromotedpathwayhumanassociatedcompromisedinhibitorstimulatingproinflammatorycytokinesmultipleligandsincreaseddisruptionprominentlyreducedapoptosisresponsenucleartranslocationmatrixmetalloproteinase-9MMP-9inducedTNFαInterestinglyalleviatedresponsesconcanavalinCon-inducedacutelyinjuredUnlikecanonicelicitFGFR-heparansulfateactivatesFGFR-KLBelicitsdifferentsetThereforefindingindicatesurgencydevelopingpathway-specificsuppresscanonicalnon-canonicalalleviatingpresentedstagesdiseasedDisruptionSignalingAmelioratesInflammatoryResponseHepaticStellateCellsMMP9cell

Similar Articles

Cited By