Extinguishing Exogenous Attention via Transcranial Magnetic Stimulation.

Antonio Fernández, Marisa Carrasco
Author Information
  1. Antonio Fernández: Department of Psychology, New York University, New York, NY 10003, USA. Electronic address: antonio.fernandez@nyu.edu.
  2. Marisa Carrasco: Department of Psychology, New York University, New York, NY 10003, USA; Center for Neural Science, New York University, New York, NY 10003, USA. Electronic address: marisa.carrasco@nyu.edu.

Abstract

Orienting covert exogenous (involuntary) attention to a target location improves performance in many visual tasks [1, 2]. It is unknown whether early visual cortical areas are necessary for this improvement. To establish a causal link between these areas and attentional modulations, we used transcranial magnetic stimulation (TMS) to briefly alter cortical excitability and determine whether early visual areas mediate the effect of exogenous attention on performance. Observers performed an orientation discrimination task. After a peripheral valid, neutral, or invalid cue, two cortically magnified gratings were presented, one in the stimulated region and the other in the symmetric region in the opposite hemifield. Observers received two successive TMS pulses around their occipital pole while the stimuli were presented. Shortly after, a response cue indicated the grating whose orientation observers had to discriminate. The response cue either matched-target stimulated-or did not match-distractor stimulated-the stimulated side. Grating contrast was varied to measure contrast response functions (CRF) for all combinations of attention and TMS conditions. When the distractor was stimulated, exogenous attention yielded response gain-performance benefits in the valid-cue condition and costs in the invalid-cue condition compared with the neutral condition at the high contrast levels. Crucially, when the target was stimulated, this response gain was eliminated. Therefore, TMS extinguished the effect of exogenous attention. These results establish a causal link between early visual areas and the modulatory effect of exogenous attention on performance.

Keywords

References

  1. Cold Spring Harb Symp Quant Biol. 2014;79:149-60 [PMID: 25948640]
  2. Exp Brain Res. 1979;37(3):495-510 [PMID: 520439]
  3. Neuron. 2011 Dec 8;72(5):832-46 [PMID: 22153378]
  4. J Neurophysiol. 1982 Jul;48(1):217-37 [PMID: 7119846]
  5. Sci Rep. 2020 Dec 4;10(1):21274 [PMID: 33277552]
  6. Sci Rep. 2019 Feb 4;9(1):1115 [PMID: 30718679]
  7. Clin Neurophysiol. 2001 Nov;112(11):2015-21 [PMID: 11682339]
  8. Spat Vis. 1997;10(4):437-42 [PMID: 9176953]
  9. Neuron. 2005 Feb 3;45(3):469-77 [PMID: 15694332]
  10. J Physiol. 1966 Aug;185(3):536-55 [PMID: 5918058]
  11. Vision Res. 2005 Jun;45(14):1867-75 [PMID: 15797776]
  12. Cereb Cortex. 2018 Jul 1;28(7):2375-2390 [PMID: 28981585]
  13. Science. 2001 Apr 20;292(5516):510-2 [PMID: 11313497]
  14. Cereb Cortex. 2010 Sep;20(9):2252-8 [PMID: 20051360]
  15. Cereb Cortex. 2015 Mar;25(3):598-608 [PMID: 24084126]
  16. Int J Psychophysiol. 2016 Jul;105:9-16 [PMID: 27114044]
  17. J Vis. 2020 Jun 3;20(6):11 [PMID: 32543651]
  18. Nat Rev Neurosci. 2013 Mar;14(3):188-200 [PMID: 23422910]
  19. Vision Res. 2009 Jul;49(14):1825-37 [PMID: 19393260]
  20. J Neurosci. 2012 Sep 5;32(36):12361-5 [PMID: 22956826]
  21. Eur J Neurosci. 2011 Mar;33(5):991-1000 [PMID: 21324004]
  22. Annu Rev Neurosci. 2004;27:611-47 [PMID: 15217345]
  23. Vision Res. 2006 Apr;46(8-9):1210-20 [PMID: 16005931]
  24. eNeuro. 2019 Jun 24;6(3): [PMID: 31175148]
  25. Nat Neurosci. 2010 Dec;13(12):1554-9 [PMID: 21057509]
  26. Nature. 1982 Jul 15;298(5871):266-8 [PMID: 7088176]
  27. Curr Biol. 2016 Jun 20;26(12):1595-1601 [PMID: 27265395]
  28. Neuroimage. 2006 Jun;31(2):774-89 [PMID: 16490366]
  29. Annu Rev Neurosci. 1995;18:193-222 [PMID: 7605061]
  30. Neuroscience. 2017 Nov 5;363:134-141 [PMID: 28893648]
  31. Neuropsychologia. 1999 Feb;37(2):191-8 [PMID: 10080376]
  32. Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16048-53 [PMID: 20805482]
  33. Curr Biol. 2003 Mar 18;13(6):493-7 [PMID: 12646132]
  34. Cereb Cortex. 2010 Feb;20(2):328-38 [PMID: 19465739]
  35. J Neurosci. 2005 May 4;25(18):4593-604 [PMID: 15872107]
  36. Vision Res. 2009 Jun;49(10):1144-53 [PMID: 18926845]
  37. Neurosci Biobehav Rev. 2017 Dec;83:381-404 [PMID: 29032089]
  38. Neuron. 2007 Jul 19;55(2):187-99 [PMID: 17640522]
  39. Neuroreport. 2000 Sep 28;11(14):3269-73 [PMID: 11043562]
  40. Hum Brain Mapp. 2005 Aug;25(4):378-90 [PMID: 15852465]
  41. Neurosci Lett. 2008 Oct 3;443(2):82-5 [PMID: 18672027]
  42. Cogn Neurosci. 2018 Jan - Apr;9(1-2):53-62 [PMID: 28826303]
  43. Brain Stimul. 2012 Apr;5(2):124-9 [PMID: 22494831]
  44. Percept Psychophys. 2008 Jan;70(1):104-13 [PMID: 18306965]
  45. Front Psychol. 2018 Jul 23;9:1250 [PMID: 30083122]
  46. J Neurophysiol. 1985 Sep;54(3):651-67 [PMID: 4045542]
  47. Annu Rev Vis Sci. 2015 Nov 24;1:373-391 [PMID: 28532368]
  48. Hum Brain Mapp. 2012 Mar;33(3):652-65 [PMID: 21416561]
  49. Proc Natl Acad Sci U S A. 2008 Apr 22;105(16):6202-7 [PMID: 18413602]
  50. Behav Res Methods. 2005 Aug;37(3):379-84 [PMID: 16405133]
  51. Behav Brain Res. 2013 Jan 15;237:107-23 [PMID: 23000534]
  52. J Vis. 2007 May 30;7(7):9.1-12 [PMID: 17685805]
  53. Percept Psychophys. 1980 Oct;28(4):377-9 [PMID: 7465322]
  54. J Cogn Neurosci. 2008 Apr;20(4):734-40 [PMID: 18052790]
  55. J Neurosci. 2007 Jan 3;27(1):93-7 [PMID: 17202476]
  56. Spat Vis. 1997;10(4):433-6 [PMID: 9176952]
  57. Neuron. 2009 Jan 29;61(2):168-85 [PMID: 19186161]
  58. Vision Res. 2001 Sep;41(19):2435-47 [PMID: 11483175]
  59. PLoS One. 2011;6(5):e19712 [PMID: 21611188]
  60. J Cogn Neurosci. 2015 May;27(5):945-58 [PMID: 25390199]
  61. Exp Brain Res. 1998 Jan;118(1):19-26 [PMID: 9547074]
  62. Vision Res. 2011 Jul 1;51(13):1484-525 [PMID: 21549742]

Grants

  1. R21 EY026185/NEI NIH HHS
  2. T32 EY007136/NEI NIH HHS

MeSH Term

Attention
Deep Brain Stimulation
Humans
Orientation
Phosphenes
Transcranial Magnetic Stimulation
Visual Cortex
Visual Perception

Word Cloud

Created with Highcharts 10.0.0attentionexogenousresponsevisualareasTMSearlystimulatedcontrastperformanceeffectcueconditioncoverttargetwhethercorticalestablishcausallinkObserversorientationneutraltwopresentedregionoccipitalgainOrientinginvoluntarylocationimprovesmanytasks[12]unknownnecessaryimprovementattentionalmodulationsusedtranscranialmagneticstimulationbrieflyalterexcitabilitydeterminemediateperformeddiscriminationtaskperipheralvalidinvalidcorticallymagnifiedgratingsonesymmetricoppositehemifieldreceivedsuccessivepulsesaroundpolestimuliShortlyindicatedgratingwhoseobserversdiscriminateeithermatched-targetstimulated-ormatch-distractorstimulated-thesideGratingvariedmeasurefunctionsCRFcombinationsconditionsdistractoryieldedgain-performancebenefitsvalid-cuecostsinvalid-cuecomparedhighlevelsCruciallyeliminatedThereforeextinguishedresultsmodulatoryExtinguishingExogenousAttentionviaTranscranialMagneticStimulationsensitivitycortex

Similar Articles

Cited By