Intensity- and timing-dependent modulation of motion perception with transcranial magnetic stimulation of visual cortex.

Olga Lucia Gamboa Arana, Hannah Palmer, Moritz Dannhauer, Connor Hile, Sicong Liu, Rena Hamdan, Alexandra Brito, Roberto Cabeza, Simon W Davis, Angel V Peterchev, Marc A Sommer, Lawrence G Appelbaum
Author Information
  1. Olga Lucia Gamboa Arana: Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA.
  2. Hannah Palmer: Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA.
  3. Moritz Dannhauer: Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA.
  4. Connor Hile: Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA.
  5. Sicong Liu: Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA.
  6. Rena Hamdan: Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA.
  7. Alexandra Brito: Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA.
  8. Roberto Cabeza: Department of Psychology & Neuroscience, Duke University, USA; Center for Cognitive Neuroscience, Duke University, USA.
  9. Simon W Davis: Center for Cognitive Neuroscience, Duke University, USA; Department of Neurology, Duke University School of Medicine, USA.
  10. Angel V Peterchev: Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA; Department of Biomedical Engineering, Duke University, USA; Department of Electrical & Computer Engineering, Duke University, USA; Department of Neurosurgery, Duke University School of Medicine, USA.
  11. Marc A Sommer: Department of Psychology & Neuroscience, Duke University, USA; Center for Cognitive Neuroscience, Duke University, USA; Department of Biomedical Engineering, Duke University, USA; Department of Neurobiology, Duke University School of Medicine, USA.
  12. Lawrence G Appelbaum: Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, USA; Center for Cognitive Neuroscience, Duke University, USA. Electronic address: greg@duke.edu.

Abstract

Despite the widespread use of transcranial magnetic stimulation (TMS) in research and clinical care, the dose-response relations and neurophysiological correlates of modulatory effects remain relatively unexplored. To fill this gap, we studied modulation of visual processing as a function of TMS parameters. Our approach combined electroencephalography (EEG) with application of single pulse TMS to visual cortex as participants performed a motion perception task. During each participants' first visit, motion coherence thresholds, 64-channel visual evoked potentials (VEPs), and TMS resting motor thresholds (RMT) were measured. In second and third visits, single pulse TMS was delivered at one of two latencies, either 30 ms before the onset of motion or at the onset latency of the N2 VEP component derived from the first session. TMS was delivered at 0%, 80%, 100%, or 120% of RMT over the site of N2 peak activity, or at 120% over vertex. Behavioral results demonstrated a significant main effect of TMS timing on accuracy, with better performance when TMS was applied at the N2-Onset timing versus Pre-Onset, as well as a significant interaction, indicating that 80% intensity produced higher accuracy than other conditions at the N2-Onset. TMS effects on the P3 VEP showed reduced amplitudes in the 80% Pre-Onset condition, an increase for the 120% N2-Onset condition, and monotonic amplitude scaling with stimulation intensity. The N2 component was not affected by TMS. These findings reveal the influence of TMS intensity and timing on visual perception and electrophysiological responses, with optimal facilitation at stimulation intensities below RMT.

Keywords

References

  1. Ann Neurol. 2005 Oct;58(4):553-60 [PMID: 16178033]
  2. Hum Brain Mapp. 2009 Apr;30(4):1387-96 [PMID: 18537115]
  3. Cereb Cortex. 2005 Nov;15(11):1736-41 [PMID: 15703247]
  4. Neuropsychologia. 2016 Apr;84:193-7 [PMID: 26916969]
  5. Neurosci Biobehav Rev. 2014 Sep;45:295-304 [PMID: 25010557]
  6. Neurol Res. 2002 Apr;24(3):266-70 [PMID: 11958420]
  7. J Neurosci. 2015 Apr 1;35(13):5351-9 [PMID: 25834059]
  8. J Neurosci. 2008 Nov 12;28(46):12071-84 [PMID: 19005072]
  9. PLoS One. 2010 Apr 22;5(4):e10281 [PMID: 20421968]
  10. Neurosci Lett. 2004 Nov 23;371(2-3):111-6 [PMID: 15519739]
  11. Brain Stimul. 2019 Jul - Aug;12(4):1051-1054 [PMID: 30962028]
  12. Science. 2001 Apr 20;292(5516):510-2 [PMID: 11313497]
  13. Hum Brain Mapp. 2008 Jun;29(6):662-70 [PMID: 17598167]
  14. Cereb Cortex. 2015 Apr;25(4):1052-9 [PMID: 24152544]
  15. J Neurosci. 2011 Mar 2;31(9):3290-4 [PMID: 21368040]
  16. Electroencephalogr Clin Neurophysiol. 1989 Nov-Dec;74(6):458-62 [PMID: 2480226]
  17. Vision Res. 2007 Jan;47(2):189-202 [PMID: 17129593]
  18. Neurosci Biobehav Rev. 2019 Dec;107:47-58 [PMID: 31473301]
  19. Exp Brain Res. 2017 Jan;235(1):205-217 [PMID: 27683006]
  20. Vision Res. 1997 Jul;37(13):1845-9 [PMID: 9274769]
  21. Neurosci Lett. 2020 Jun 21;730:135022 [PMID: 32413540]
  22. Trends Neurosci. 2016 Nov;39(11):782-795 [PMID: 27697295]
  23. Clin Neurophysiol. 2004 Apr;115(4):812-9 [PMID: 15003761]
  24. Neuroimage. 2005 Feb 15;24(4):955-60 [PMID: 15670672]
  25. Clin Neurophysiol. 2014 Nov;125(11):2247-2252 [PMID: 24725846]
  26. Physiol Res. 2002;51(2):199-204 [PMID: 12108931]
  27. Brain. 1995 Feb;118 ( Pt 1):49-60 [PMID: 7895014]
  28. Physiol Res. 1998;47(4):265-70 [PMID: 9803473]
  29. Brain Stimul. 2018 Sep - Oct;11(5):1189-1191 [PMID: 29885859]
  30. Biol Psychol. 1982 Feb-Mar;14(1-2):1-52 [PMID: 6809064]
  31. Neuropsychologia. 2010 Oct;48(12):3563-72 [PMID: 20713072]
  32. J Cogn Neurosci. 2018 Oct;30(10):1517-1531 [PMID: 29916788]
  33. Neuroimage. 2014 Nov 1;101:425-39 [PMID: 25067813]
  34. Neuroscience. 2017 Nov 5;363:134-141 [PMID: 28893648]
  35. Neurosci Biobehav Rev. 2011 Jan;35(3):516-36 [PMID: 20599555]
  36. J Neurophysiol. 2007 Sep;98(3):1253-62 [PMID: 17634339]
  37. Front Hum Neurosci. 2020 Jan 24;14:4 [PMID: 32038206]
  38. Annu Rev Biomed Eng. 2007;9:527-65 [PMID: 17444810]
  39. Psychophysiology. 2001 May;38(3):557-77 [PMID: 11352145]
  40. Exp Brain Res. 2001 Oct;140(4):397-406 [PMID: 11685392]
  41. Clin Neurophysiol. 2009 Dec;120(12):2008-2039 [PMID: 19833552]
  42. Phys Rev Lett. 2000 Mar 13;84(11):2310-3 [PMID: 11018872]
  43. Clin Neurophysiol. 2002 Sep;113(9):1501-4 [PMID: 12169333]
  44. Eur J Neurosci. 2007 Mar;25(6):1874-81 [PMID: 17408427]
  45. Cereb Cortex. 2002 Jun;12(6):663-9 [PMID: 12003865]
  46. Proc Biol Sci. 1992 Aug 22;249(1325):173-8 [PMID: 1360678]
  47. Neuroimage. 2019 Jan 15;185:300-312 [PMID: 30347282]
  48. J ECT. 2006 Sep;22(3):169-75 [PMID: 16957531]
  49. Front Psychol. 2018 May 17;9:741 [PMID: 29867693]
  50. Percept Psychophys. 1990 Dec;48(6):603-17 [PMID: 2270192]
  51. Clin Neurophysiol. 2017 Nov;128(11):2125-2139 [PMID: 28938143]
  52. Brain Stimul. 2015 Nov-Dec;8(6):1175-82 [PMID: 26169802]
  53. Clin Neurophysiol. 2006 Aug;117(8):1699-707 [PMID: 16797232]
  54. Clin Neurophysiol. 1999 Aug;110(8):1325-8 [PMID: 10454266]
  55. Neuroimage. 2006 Feb 15;29(4):1326-35 [PMID: 16185899]
  56. Clin Neurophysiol. 2004 Mar;115(3):583-8 [PMID: 15036054]
  57. J Neurophysiol. 1995 Sep;74(3):1037-45 [PMID: 7500130]
  58. Spat Vis. 1997;10(4):433-6 [PMID: 9176952]
  59. Brain Topogr. 2015 May;28(3):520-8 [PMID: 23996091]
  60. J Neurosci Methods. 2018 Jan 15;294:34-39 [PMID: 29103999]
  61. J Neurosci. 2011 Mar 2;31(9):3143-7 [PMID: 21368025]
  62. Neuroreport. 2004 Feb 9;15(2):297-302 [PMID: 15076756]
  63. Neuroreport. 2008 Sep 17;19(14):1423-7 [PMID: 18766024]

Grants

  1. RF1 MH114253/NIMH NIH HHS

MeSH Term

Electroencephalography
Evoked Potentials, Visual
Humans
Motion Perception
Motor Cortex
Transcranial Magnetic Stimulation
Visual Cortex

Word Cloud

Created with Highcharts 10.0.0TMSstimulationvisualmotionmagneticcortexperceptionRMTN280%120%timingN2-OnsetintensitytranscranialeffectsmodulationsinglepulsefirstthresholdsevokeddeliveredonsetVEPcomponentsignificantaccuracyPre-OnsetconditionpotentialVisualDespitewidespreaduseresearchclinicalcaredose-responserelationsneurophysiologicalcorrelatesmodulatoryremainrelativelyunexploredfillgapstudiedprocessingfunctionparametersapproachcombinedelectroencephalographyEEGapplicationparticipantsperformedtaskparticipants'visitcoherence64-channelpotentialsVEPsrestingmotormeasuredsecondthirdvisitsonetwolatencieseither30 mslatencyderivedsession0%100%sitepeakactivityvertexBehavioralresultsdemonstratedmaineffectbetterperformanceappliedversuswellinteractionindicatingproducedhigherconditionsP3showedreducedamplitudesincreasemonotonicamplitudescalingaffectedfindingsrevealinfluenceelectrophysiologicalresponsesoptimalfacilitationintensitiesIntensity-timing-dependentMotionsensitiveEvokedTranscranial

Similar Articles

Cited By