Metabolt: An In-Situ Instrument to Characterize the Metabolic Activity of Microbial Soil Ecosystems Using Electrochemical and Gaseous Signatures.

Miracle Israel Nazarious, María-Paz Zorzano, Javier Martín-Torres
Author Information
  1. Miracle Israel Nazarious: Group of Atmospheric Science, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, 97187 Luleå, Sweden. ORCID
  2. María-Paz Zorzano: Group of Atmospheric Science, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, 97187 Luleå, Sweden.
  3. Javier Martín-Torres: Group of Atmospheric Science, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, 97187 Luleå, Sweden. ORCID

Abstract

Metabolt is a portable soil incubator to characterize the metabolic activity of microbial ecosystems in soils. It measures the electrical conductivity, the redox potential, and the concentration of certain metabolism-related gases in the headspace just above a given sample of regolith. In its current design, the overall weight of Metabolt, including the soils (250 g), is 1.9 kg with a maximum power consumption of 1.5 W. Metabolt has been designed to monitor the activity of the soil microbiome for Earth and space applications. In particular, it can be used to monitor the health of soils, the atmospheric-regolith fixation, and release of gaseous species such as N, HO, CO, O, NO, NH, etc., that affect the Earth climate and atmospheric chemistry. It may be used to detect and monitor life signatures in soils, treated or untreated, as well as in controlled environments like greenhouse facilities in space, laboratory research environments like anaerobic chambers, or simulating facilities with different atmospheres and pressures. To illustrate its operation, we tested the instrument with sub-arctic soil samples at Earth environmental conditions under three different conditions: (i) no treatment (unperturbed); (ii) sterilized soil: after heating at 125 °C for 35.4 h (thermal stress); (iii) stressed soil: after adding 25% CaCl brine (osmotic stress); with and without addition of 0.5% glucose solution (for control). All the samples showed some distinguishable metabolic response, however there was a time delay on its appearance which depends on the treatment applied to the samples: 80 h for thermal stress without glucose, 59 h with glucose; 36 h for osmotic stress with glucose and no significant reactivation in the pure water case. This instrument shows that, over time, there is a clear observable footprint of the electrochemical signatures in the redox profile which is complementary to the gaseous footprint of the metabolic activity through respiration.

Keywords

References

  1. Front Microbiol. 2016 Aug 09;7:1247 [PMID: 27555839]
  2. Astrobiology. 2016 Nov;16(11):846-852 [PMID: 27827533]
  3. Astrobiology. 2016 Jan;16(1):89-117 [PMID: 26741054]
  4. Front Microbiol. 2014 Nov 21;5:621 [PMID: 25484879]
  5. Nat Rev Microbiol. 2017 Oct;15(10):579-590 [PMID: 28824177]
  6. Biotechnol Bioeng. 2005 Dec 20;92(6):685-94 [PMID: 16167332]
  7. J Bacteriol. 2012 Aug;194(16):4151-60 [PMID: 22661685]
  8. Appl Environ Microbiol. 2000 Aug;66(8):3230-3 [PMID: 10919774]
  9. ISME J. 2015 Jun;9(6):1333-51 [PMID: 25500507]
  10. Nature. 2015 Jun 18;522(7556):270-3 [PMID: 26085253]
  11. Nat Rev Microbiol. 2010 Jan;8(1):15-25 [PMID: 19946288]
  12. Astrobiology. 2014 Nov;14(11):887-968 [PMID: 25401393]
  13. BMC Microbiol. 2002 Jul 31;2:22 [PMID: 12150716]
  14. EMBO Rep. 2004 May;5(5):470-6 [PMID: 15184977]
  15. Planet Space Sci. 1998 Jun-Jul;46(6-7):769-77 [PMID: 11541819]
  16. Sensors (Basel). 2020 Jul 18;20(14): [PMID: 32708384]
  17. Front Microbiol. 2017 Dec 20;8:2594 [PMID: 29326684]
  18. Sci Rep. 2018 Nov 12;8(1):16706 [PMID: 30420604]
  19. Appl Environ Microbiol. 1991 Jul;57(7):1974-9 [PMID: 1892387]
  20. Environ Microbiol. 2017 Feb;19(2):687-697 [PMID: 27871132]
  21. Microbiol Rev. 1989 Mar;53(1):121-47 [PMID: 2651863]
  22. J Bacteriol. 1938 Dec;36(6):571-86 [PMID: 16560176]
  23. Environ Microbiol. 2009 Dec;11(12):3292-308 [PMID: 19840102]
  24. Front Microbiol. 2015 Oct 06;6:1035 [PMID: 26500612]
  25. J R Soc Med. 2002 Feb;95(2):81-3 [PMID: 11823550]
  26. Appl Microbiol. 1974 Dec;28(6):960-7 [PMID: 4451377]
  27. Microbes Environ. 2015;30(2):123-5 [PMID: 26094633]

MeSH Term

Atmosphere
Carbon Dioxide
Ecosystem
Environmental Monitoring
Gases
Soil
Soil Microbiology

Chemicals

Gases
Soil
Carbon Dioxide

Word Cloud

Created with Highcharts 10.0.0MetaboltsoilshstressglucosesoilmetabolicactivityredoxmonitorEarthspacemicrobialelectricalconductivitypotential1usedgaseoussignaturesenvironmentslikefacilitiesresearchdifferentinstrumentsamplestreatmentsoil:thermalosmoticwithouttimefootprintplanetaryportableincubatorcharacterizeecosystemsmeasuresconcentrationcertainmetabolism-relatedgasesheadspacejustgivensampleregolithcurrentdesignoverallweightincluding250g9kgmaximumpowerconsumption5Wdesignedmicrobiomeapplicationsparticularcanhealthatmospheric-regolithfixationreleasespeciesNHOCOONONHetcaffectclimateatmosphericchemistrymaydetectlifetreateduntreatedwellcontrolledgreenhouselaboratoryanaerobicchamberssimulatingatmospherespressuresillustrateoperationtestedsub-arcticenvironmentalconditionsthreeconditions:unperturbediisterilizedheating125°C354iiistressedadding25%CaClbrineaddition05%solutioncontrolshoweddistinguishableresponsehoweverdelayappearancedependsappliedsamples:805936significantreactivationpurewatercaseshowsclearobservableelectrochemicalprofilecomplementaryrespirationMetabolt:In-SituInstrumentCharacterizeMetabolicActivityMicrobialSoilEcosystemsUsingElectrochemicalGaseousSignaturesastrobiologygasmonitoringgreenhousesmetabolismanalogueexploration

Similar Articles

Cited By