Deciphering serous ovarian carcinoma histopathology and platinum response by convolutional neural networks.

Kun-Hsing Yu, Vincent Hu, Feiran Wang, Ursula A Matulonis, George L Mutter, Jeffrey A Golden, Isaac S Kohane
Author Information
  1. Kun-Hsing Yu: Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA. Kun-Hsing_Yu@hms.harvard.edu. ORCID
  2. Vincent Hu: Department of Bioengineering, University of California San Diego, San Diego, CA, USA.
  3. Feiran Wang: Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
  4. Ursula A Matulonis: Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
  5. George L Mutter: Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
  6. Jeffrey A Golden: Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
  7. Isaac S Kohane: Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA. Isaac_Kohane@hms.harvard.edu.

Abstract

BACKGROUND: Ovarian cancer causes 151,900 deaths per year worldwide. Treatment and prognosis are primarily determined by the histopathologic interpretation in combination with molecular diagnosis. However, the relationship between histopathology patterns and molecular alterations is not fully understood, and it is difficult to predict patients' chemotherapy response using the known clinical and histological variables.
METHODS: We analyzed the whole-slide histopathology images, RNA-Seq, and proteomics data from 587 primary serous ovarian adenocarcinoma patients and developed a systematic algorithm to integrate histopathology and functional omics findings and to predict patients' response to platinum-based chemotherapy.
RESULTS: Our convolutional neural networks identified the cancerous regions with areas under the receiver operating characteristic curve (AUCs) > 0.95 and classified tumor grade with AUCs > 0.80. Functional omics analysis revealed that expression levels of proteins participated in innate immune responses and catabolic pathways are associated with tumor grade. Quantitative histopathology analysis successfully stratified patients with different response to platinum-based chemotherapy (P = 0.003).
CONCLUSIONS: These results indicated the potential clinical utility of quantitative histopathology evaluation in tumor cell detection and chemotherapy response prediction. The developed algorithm is easily extensible to other tumor types and treatment modalities.

Keywords

References

  1. Nat Med. 2018 Oct;24(10):1559-1567 [PMID: 30224757]
  2. Br J Cancer. 2008 Oct 7;99(7):1103-13 [PMID: 18766180]
  3. CA Cancer J Clin. 2018 Jul;68(4):284-296 [PMID: 29809280]
  4. Cell. 2016 Jul 28;166(3):755-765 [PMID: 27372738]
  5. Hum Pathol. 2008 Aug;39(8):1239-51 [PMID: 18602670]
  6. Gynecol Oncol. 2018 Sep;150(3):521-526 [PMID: 30001835]
  7. Nat Rev Cancer. 2007 Aug;7(8):573-84 [PMID: 17625587]
  8. Gynecol Oncol. 2014 Jun;133(3):401-4 [PMID: 24878391]
  9. J Clin Invest. 2013 Jan;123(1):517-25 [PMID: 23257362]
  10. J Proteome Res. 2016 Aug 5;15(8):2455-65 [PMID: 27312948]
  11. G3 (Bethesda). 2016 Dec 7;6(12):4097-4103 [PMID: 27729437]
  12. Lancet. 2014 Oct 11;384(9951):1376-88 [PMID: 24767708]
  13. Nat Commun. 2016 Aug 16;7:12474 [PMID: 27527408]
  14. J Med Internet Res. 2020 Aug 5;22(8):e16709 [PMID: 32755895]
  15. Clin Cancer Res. 2007 Dec 1;13(23):6984-92 [PMID: 18056174]
  16. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  17. J Am Med Inform Assoc. 2020 May 1;27(5):757-769 [PMID: 32364237]
  18. Semin Surg Oncol. 1994 Jan-Feb;10(1):31-46 [PMID: 8115784]
  19. Nature. 2011 Jun 29;474(7353):609-15 [PMID: 21720365]
  20. Nat Biomed Eng. 2018 Oct;2(10):719-731 [PMID: 31015651]
  21. Ther Adv Med Oncol. 2014 Sep;6(5):229-39 [PMID: 25342990]
  22. Nucleic Acids Res. 2015 Jan;43(Database issue):D1049-56 [PMID: 25428369]
  23. Gynecol Oncol. 2014 Jun;133(3):624-31 [PMID: 24607285]
  24. Bioinformatics. 2018 Jan 15;34(2):319-320 [PMID: 28968749]
  25. Cancer Causes Control. 2013 Apr;24(4):749-57 [PMID: 23378140]
  26. Cell Syst. 2017 Dec 27;5(6):620-627.e3 [PMID: 29153840]
  27. Crit Rev Oncol Hematol. 2014 Feb;89(2):207-16 [PMID: 24071502]
  28. Cochrane Database Syst Rev. 2000;(2):CD001418 [PMID: 10796788]
  29. Cancers (Basel). 2011 Mar 15;3(1):1351-71 [PMID: 24212665]
  30. Sci Transl Med. 2011 Nov 9;3(108):108ra113 [PMID: 22072638]
  31. Int J Gynecol Cancer. 2013 Oct;23(8):1376-82 [PMID: 24257551]
  32. CA Cancer J Clin. 2015 Mar;65(2):87-108 [PMID: 25651787]
  33. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  34. J Cancer. 2014 Jan 01;5(1):25-30 [PMID: 24396495]
  35. Nucleic Acids Res. 2017 Jan 4;45(D1):D362-D368 [PMID: 27924014]

MeSH Term

Female
Humans
Middle Aged
Ovarian Neoplasms
Platinum
Prognosis

Chemicals

Platinum

Word Cloud

Created with Highcharts 10.0.0histopathologyresponsechemotherapytumorovarianmolecularpredictpatients'clinicalserouspatientsdevelopedalgorithmomicsplatinum-basedconvolutionalneuralnetworksAUCs> 0gradeanalysisexpressioncarcinomaBACKGROUND:Ovariancancercauses151900deathsperyearworldwideTreatmentprognosisprimarilydeterminedhistopathologicinterpretationcombinationdiagnosisHoweverrelationshippatternsalterationsfullyunderstooddifficultusingknownhistologicalvariablesMETHODS:analyzedwhole-slideimagesRNA-Seqproteomicsdata587primaryadenocarcinomasystematicintegratefunctionalfindingsRESULTS:identifiedcancerousregionsareasreceiveroperatingcharacteristiccurve95classified80FunctionalrevealedlevelsproteinsparticipatedinnateimmuneresponsescatabolicpathwaysassociatedQuantitativesuccessfullystratifieddifferentP = 0003CONCLUSIONS:resultsindicatedpotentialutilityquantitativeevaluationcelldetectionpredictioneasilyextensibletypestreatmentmodalitiesDecipheringplatinumDigitalpathologyGeneMachinelearningPlatinumProteomicsSerous

Similar Articles

Cited By (17)