A cryptic tubulin-binding domain links MEKK1 to curved tubulin protomers.

Pavel Filipčík, Sharissa L Latham, Antonia L Cadell, Catherine L Day, David R Croucher, Peter D Mace
Author Information
  1. Pavel Filipčík: Biochemistry Department, School of Biomedical Sciences, University of Otago, 9054 Dunedin, New Zealand. ORCID
  2. Sharissa L Latham: The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia. ORCID
  3. Antonia L Cadell: The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia. ORCID
  4. Catherine L Day: Biochemistry Department, School of Biomedical Sciences, University of Otago, 9054 Dunedin, New Zealand. ORCID
  5. David R Croucher: The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia. ORCID
  6. Peter D Mace: Biochemistry Department, School of Biomedical Sciences, University of Otago, 9054 Dunedin, New Zealand; peter.mace@otago.ac.nz. ORCID

Abstract

The MEKK1 protein is a pivotal kinase activator of responses to cellular stress. Activation of MEKK1 can trigger various responses, including mitogen-activated protein (MAP) kinases, NF-κB signaling, or cell migration. Notably, MEKK1 activity is triggered by microtubule-targeting chemotherapies, among other stressors. Here we show that MEKK1 contains a previously unidentified tumor overexpressed gene (TOG) domain. The MEKK1 TOG domain binds to tubulin heterodimers-a canonical function of TOG domains-but is unusual in that it appears alone rather than as part of a multi-TOG array, and has structural features distinct from previously characterized TOG domains. MEKK1 TOG demonstrates a clear preference for binding curved tubulin heterodimers, which exist in soluble tubulin and at sites of microtubule polymerization and depolymerization. Mutations disrupting tubulin binding decrease microtubule density at the leading edge of polarized cells, suggesting that tubulin binding may play a role in MEKK1 activity at the cellular periphery. We also show that MEKK1 mutations at the tubulin-binding interface of the TOG domain recur in patient-derived tumor sequences, suggesting selective enrichment of tumor cells with disrupted MEKK1-microtubule association. Together, these findings provide a direct link between the MEKK1 protein and tubulin, which is likely to be relevant to cancer cell migration and response to microtubule-modulating therapies.

Keywords

References

  1. Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42 [PMID: 21460441]
  2. Neoplasia. 2001 Sep-Oct;3(5):385-94 [PMID: 11687949]
  3. Science. 1998 Dec 4;282(5395):1911-4 [PMID: 9836645]
  4. Cell Motil Cytoskeleton. 1999;43(3):186-98 [PMID: 10401575]
  5. Methods Cell Biol. 2008;88:299-317 [PMID: 18617040]
  6. Protein Sci. 2013 Dec;22(12):1698-710 [PMID: 24115095]
  7. Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2256-68 [PMID: 15572779]
  8. Methods. 2011 Sep;55(1):94-106 [PMID: 21821126]
  9. Cell. 1997 Jan 24;88(2):213-22 [PMID: 9008162]
  10. Nature. 1998 Jan 8;391(6663):199-203 [PMID: 9428769]
  11. Elife. 2014 Aug 05;3:e03069 [PMID: 25097237]
  12. Protein Expr Purif. 2003 Nov;32(1):83-8 [PMID: 14680943]
  13. Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):355-67 [PMID: 21460454]
  14. Acta Crystallogr D Biol Crystallogr. 2006 Jan;62(Pt 1):72-82 [PMID: 16369096]
  15. Cell. 1997 Jul 25;90(2):315-23 [PMID: 9244305]
  16. Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):282-92 [PMID: 21460446]
  17. J Mol Biol. 2017 Mar 10;429(5):633-646 [PMID: 28104363]
  18. Mol Cell Biol. 1998 Apr;18(4):2416-29 [PMID: 9528810]
  19. PLoS One. 2011 Feb 25;6(2):e17310 [PMID: 21364884]
  20. J Struct Biol. 2016 Jan;193(1):1-12 [PMID: 26592709]
  21. J Biol Chem. 1999 Apr 30;274(18):12605-10 [PMID: 10212239]
  22. J Biol Chem. 2000 Dec 22;275(51):40120-7 [PMID: 10969079]
  23. Biochemistry. 1997 May 6;36(18):5600-6 [PMID: 9154944]
  24. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5595-600 [PMID: 9576928]
  25. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9319-24 [PMID: 9689078]
  26. Biochem J. 2012 Aug 1;445(3):431-9 [PMID: 22582703]
  27. Nat Immunol. 2007 Jan;8(1):57-63 [PMID: 17143273]
  28. Nature. 2010 Aug 12;466(7308):869-73 [PMID: 20668451]
  29. J Synchrotron Radiat. 2015 Jan;22(1):187-90 [PMID: 25537608]
  30. Genes Cancer. 2011 Mar;2(3):232-60 [PMID: 21779496]
  31. Mol Biol Cell. 2018 Jun 1;29(11):1359-1375 [PMID: 29851564]
  32. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W299-302 [PMID: 15980475]
  33. Nat Protoc. 2016 May;11(5):882-94 [PMID: 27055097]
  34. J Biol Chem. 2003 Jan 17;278(3):1403-6 [PMID: 12456688]
  35. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2365-9 [PMID: 1347949]
  36. Nature. 2019 Nov;575(7783):545-550 [PMID: 31581174]
  37. Acta Crystallogr D Biol Crystallogr. 2005 Apr;61(Pt 4):449-57 [PMID: 15805600]
  38. Methods. 2015 Apr;76:137-148 [PMID: 25477226]
  39. J Struct Biol. 2017 Jun;198(3):163-176 [PMID: 28193500]
  40. J Mol Biol. 2017 Apr 21;429(8):1097-1113 [PMID: 28235544]
  41. Mol Cell. 2007 Sep 21;27(6):976-91 [PMID: 17889670]
  42. Nat Protoc. 2008;3(7):1171-9 [PMID: 18600222]
  43. J Mol Biol. 2015 Jul 17;427(14):2379-95 [PMID: 26003921]
  44. Science. 2012 Aug 17;337(6096):857-60 [PMID: 22904013]
  45. J Cell Biol. 2014 Mar 3;204(5):821-38 [PMID: 24567356]
  46. Breast Cancer Res. 2019 Mar 21;21(1):43 [PMID: 30898150]
  47. J Cell Sci. 2016 Oct 1;129(19):3574-3582 [PMID: 27528401]
  48. BMC Biotechnol. 2008 Dec 04;8:91 [PMID: 19055817]
  49. J Mol Biol. 2011 Sep 9;412(1):35-42 [PMID: 21787788]
  50. Elife. 2018 Nov 13;7: [PMID: 30422110]
  51. Genes Dev. 1998 Nov 1;12(21):3369-81 [PMID: 9808624]
  52. Nature. 2007 Jun 28;447(7148):1087-93 [PMID: 17529967]
  53. Nat Rev Mol Cell Biol. 2018 Jul;19(7):451-463 [PMID: 29674711]
  54. J Am Soc Nephrol. 1998 Feb;9(2):155-66 [PMID: 9527391]
  55. J Cell Biol. 2017 Jun 5;216(6):1641-1657 [PMID: 28512144]
  56. Proteins. 2001 Jan 1;42(1):38-48 [PMID: 11093259]
  57. J Synchrotron Radiat. 2004 Jan 1;11(Pt 1):56-9 [PMID: 14646134]
  58. Cancer Discov. 2012 May;2(5):401-4 [PMID: 22588877]
  59. Mol Cell Biol. 2007 Jan;27(2):510-7 [PMID: 17101801]
  60. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W402-5 [PMID: 19395596]
  61. Elife. 2018 Jun 13;7: [PMID: 29897335]
  62. Mol Cell. 2002 May;9(5):945-56 [PMID: 12049732]
  63. Autophagy. 2013 Apr;9(4):550-67 [PMID: 23380587]
  64. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W529-33 [PMID: 20478830]
  65. Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 [PMID: 15572765]
  66. Mol Biol Cell. 2014 Aug 15;25(16):2375-92 [PMID: 24966168]
  67. Nat Rev Mol Cell Biol. 2019 Jan;20(1):38-54 [PMID: 30323238]
  68. J Biol Chem. 1999 Apr 16;274(16):10916-22 [PMID: 10196170]
  69. Science. 2008 Aug 1;321(5889):663-8 [PMID: 18635759]
  70. J Biol Chem. 2004 Jan 16;279(3):1872-7 [PMID: 14581471]
  71. Structure. 2017 Jan 3;25(1):146-156 [PMID: 28017521]
  72. Elife. 2018 Nov 09;7: [PMID: 30412051]
  73. Biochem J. 1997 Feb 15;322 ( Pt 1):185-92 [PMID: 9078260]
  74. Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32 [PMID: 20124692]
  75. Nature. 2004 Mar 11;428(6979):198-202 [PMID: 15014504]
  76. Acta Crystallogr D Biol Crystallogr. 2013 Jul;69(Pt 7):1204-14 [PMID: 23793146]
  77. Science. 2019 Oct 4;366(6461):109-115 [PMID: 31604311]
  78. Proc Natl Acad Sci U S A. 2012 Jul 24;109(30):12011-6 [PMID: 22778434]
  79. Mol Pharmacol. 2001 Feb;59(2):254-62 [PMID: 11160861]
  80. Elife. 2013 Sep 10;2:e01456 [PMID: 24040512]
  81. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5291-5 [PMID: 8643568]
  82. PLoS Comput Biol. 2014 Feb 06;10(2):e1003464 [PMID: 24516374]
  83. Sci Signal. 2013 Apr 02;6(269):pl1 [PMID: 23550210]
  84. J Biol Chem. 2016 Aug 26;291(35):18496-504 [PMID: 27402853]
  85. EMBO J. 2014 Nov 3;33(21):2581-96 [PMID: 25260751]
  86. J Biol Chem. 2002 Mar 22;277(12):10283-91 [PMID: 11782455]
  87. Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):2741-6 [PMID: 21282620]
  88. Cell Cycle. 2003 Mar-Apr;2(2):123-6 [PMID: 12695663]
  89. J Cell Physiol. 2002 Aug;192(2):200-8 [PMID: 12115726]
  90. Mol Cell Biol. 2001 Nov;21(21):7183-90 [PMID: 11585901]
  91. Dev Cell. 2018 Jul 2;46(1):40-58.e8 [PMID: 29937387]

MeSH Term

Humans
MAP Kinase Kinase Kinase 1
Neoplasms
Protein Domains
Tubulin

Chemicals

Tubulin
MAP Kinase Kinase Kinase 1
MAP3K1 protein, human

Word Cloud

Created with Highcharts 10.0.0MEKK1tubulinTOGdomainproteintumorbindingkinaseresponsescellularcellmigrationactivityshowpreviouslycurvedmicrotubulecellssuggestingtubulin-bindingpivotalactivatorstressActivationcantriggervariousincludingmitogen-activatedMAPkinasesNF-κBsignalingNotablytriggeredmicrotubule-targetingchemotherapiesamongstressorscontainsunidentifiedoverexpressedgenebindsheterodimers-acanonicalfunctiondomains-butunusualappearsaloneratherpartmulti-TOGarraystructuralfeaturesdistinctcharacterizeddomainsdemonstratesclearpreferenceheterodimersexistsolublesitespolymerizationdepolymerizationMutationsdisruptingdecreasedensityleadingedgepolarizedmayplayroleperipheryalsomutationsinterfacerecurpatient-derivedsequencesselectiveenrichmentdisruptedMEKK1-microtubuleassociationTogetherfindingsprovidedirectlinklikelyrelevantcancerresponsemicrotubule-modulatingtherapiescrypticlinksprotomersMAPK

Similar Articles

Cited By