Screening for Resistance in Farmer-Preferred Cassava Cultivars from Ghana to a Mixed Infection of CBSV and UCBSV.

Wilfred Elegba, Wilhelm Gruissem, Hervé Vanderschuren
Author Information
  1. Wilfred Elegba: Plant Biotechnology, Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092 Zurich, Switzerland.
  2. Wilhelm Gruissem: Plant Biotechnology, Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092 Zurich, Switzerland.
  3. Hervé Vanderschuren: Plant Biotechnology, Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092 Zurich, Switzerland. ORCID

Abstract

Cassava brown streak disease (CBSD) caused by the (CBSV) and (UCBSV) is a threat to cassava production in Africa. The potential spread of CBSD into West Africa is a cause for concern, therefore screening for resistance in farmer-preferred genotypes is crucial for effective control and management. We multiplied a selection of eleven cassava cultivars grown by farmers in Ghana to test their response to a mixed infection of CBSV (TAZ-DES-01) and UCBSV (TAZ-DES-02) isolates using a stringent top-cleft graft inoculation method. Virus titers were quantified in the inoculated scions and cuttings propagated from the inoculated scions to assess virus accumulation and recovery. All cultivars were susceptible to the mixed infection although their response and symptom development varied. In the propagated infected scions, CBSV accumulated at higher titers in leaves of eight of the eleven cultivars. Visual scoring of storage roots from six-month-old virus-inoculated plants revealed the absence of CBSD-associated necrosis symptoms and detectable titers of CBSVs in the cultivar, IFAD. Although all eleven cultivars supported the replication of CBSV and UCBSV in their leaves, the absence of virus replication and CBSD-associated symptoms in the roots of some cultivars could be used as criteria to rapidly advance durable CBSD tolerance using breeding and genetic engineering approaches.

Keywords

References

  1. Virol J. 2014 Dec 20;11:216 [PMID: 25526680]
  2. Plant Biotechnol J. 2019 Feb;17(2):421-434 [PMID: 30019807]
  3. Mol Plant Pathol. 2018 Feb;19(2):476-489 [PMID: 28494519]
  4. Biotechniques. 1993 May;14(5):748-50 [PMID: 8512694]
  5. Sci Rep. 2016 Nov 03;6:36164 [PMID: 27808114]
  6. Adv Virus Res. 2006;67:245-95 [PMID: 17027682]
  7. BMC Res Notes. 2013 Dec 06;6:516 [PMID: 24314370]
  8. Mol Plant Pathol. 2012 Dec;13(9):1019-31 [PMID: 22845735]
  9. Acta Virol. 2012;56(4):305-14 [PMID: 23237086]
  10. J Gen Virol. 2015 May;96(Pt 5):956-68 [PMID: 26015320]
  11. Plant Dis. 2007 Jan;91(1):24-29 [PMID: 30781061]
  12. Adv Virus Res. 2015;91:85-142 [PMID: 25591878]
  13. J Virol. 2009 Jul;83(13):6934-40 [PMID: 19386713]
  14. Front Plant Sci. 2019 May 10;10:567 [PMID: 31134114]
  15. Virus Res. 2014 Jun 24;186:61-75 [PMID: 24291251]
  16. J Gen Virol. 2010 May;91(Pt 5):1365-72 [PMID: 20071490]
  17. Virus Res. 2011 Aug;159(2):161-70 [PMID: 21549776]
  18. Mol Plant Pathol. 2011 Sep;12(7):677-87 [PMID: 21726367]
  19. Phytopathology. 2015 May;105(5):646-55 [PMID: 25585059]
  20. Mol Plant Pathol. 2009 Sep;10(5):685-701 [PMID: 19694957]
  21. J Gen Virol. 1997 Aug;78 ( Pt 8):2101-11 [PMID: 9267014]
  22. Mol Plant Microbe Interact. 2016 Jul;29(7):527-34 [PMID: 27070326]
  23. Front Plant Sci. 2017 Jan 12;7:2060 [PMID: 28127301]
  24. PLoS One. 2015 Oct 06;10(10):e0139321 [PMID: 26439260]
  25. J Gen Virol. 2000 Jan;81(Pt 1):287-97 [PMID: 10640569]
  26. J Gen Virol. 2001 Mar;82(Pt 3):655-665 [PMID: 11172108]
  27. J Virol Methods. 2011 Feb;171(2):394-400 [PMID: 20923689]
  28. Arch Virol. 2010 Mar;155(3):429-33 [PMID: 20094895]
  29. J Virol Methods. 2011 Oct;177(1):49-54 [PMID: 21756941]
  30. Adv Virus Res. 2006;67:355-418 [PMID: 17027685]
  31. Mol Biotechnol. 2019 Feb;61(2):93-101 [PMID: 30484144]
  32. PLoS One. 2012;7(9):e45277 [PMID: 23049780]
  33. Adv Virol. 2012;2012:795697 [PMID: 22454639]