Challenges and Opportunities for Integrating Dealloying Methods into Additive Manufacturing.

A Chuang, J Erlebacher
Author Information
  1. A Chuang: Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
  2. J Erlebacher: Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.

Abstract

The physical architecture of materials plays an integral role in determining material properties and functionality. While many processing techniques now exist for fabricating parts of any shape or size, a couple of techniques have emerged as facile and effective methods for creating unique structures: dealloying and additive manufacturing. This review discusses progress and challenges in the integration of dealloying techniques with the additive manufacturing (AM) platform to take advantage of the material processing capabilities established by each field. These methods are uniquely complementary: not only can we use AM to make nanoporous metals of complex, customized shapes-for instance, with applications in biomedical implants and microfluidics-but dealloying can occur simultaneously during AM to produce unique composite materials with nanoscale features of two interpenetrating phases. We discuss the experimental challenges of implementing these processing methods and how future efforts could be directed to address these difficulties. Our premise is that combining these synergistic techniques offers both new avenues for creating 3D functional materials and new functional materials that cannot be synthesized any other way. Dealloying and AM will continue to grow both independently and together as the materials community realizes the potential of this compelling combination.

Keywords

References

  1. Materials (Basel). 2013 Dec 06;6(12):5700-5712 [PMID: 28788418]
  2. Nano Lett. 2009 Mar;9(3):1158-63 [PMID: 19193021]
  3. J Biomed Mater Res A. 2016 Jul;104(7):1747-58 [PMID: 26990484]
  4. J Biomed Nanotechnol. 2018 Aug 1;14(8):1477-1485 [PMID: 29903062]
  5. ACS Appl Mater Interfaces. 2019 Feb 27;11(8):8499-8506 [PMID: 30689948]
  6. J Colloid Interface Sci. 2019 Oct 15;554:674-681 [PMID: 31351338]
  7. J Hazard Mater. 2017 Oct 15;340:445-453 [PMID: 28755552]
  8. Chemphyschem. 2010 Oct 25;11(15):3320-8 [PMID: 20799316]
  9. Nat Commun. 2015 Nov 19;6:8887 [PMID: 26582248]
  10. Small. 2019 May;15(22):e1805432 [PMID: 31026109]
  11. Nat Commun. 2018 Jan 18;9(1):276 [PMID: 29348401]
  12. Philos Trans A Math Phys Eng Sci. 2010 Apr 28;368(1917):1999-2032 [PMID: 20308113]
  13. Sci Rep. 2017 Dec;7(1):20 [PMID: 28154414]
  14. J Am Chem Soc. 2003 Jul 2;125(26):7772-3 [PMID: 12822974]
  15. Nat Mater. 2012 Sep;11(9):775-80 [PMID: 22886067]
  16. Mater Sci Eng C Mater Biol Appl. 2018 Jul 1;88:95-103 [PMID: 29636143]
  17. Mater Sci Eng C Mater Biol Appl. 2014 May 1;38:1-10 [PMID: 24656346]
  18. ACS Appl Mater Interfaces. 2020 Jan 15;12(2):2793-2804 [PMID: 31846299]
  19. ACS Nano. 2013 Jul 23;7(7):5948-54 [PMID: 23789979]
  20. Opt Express. 2016 Oct 3;24(20):23610-23617 [PMID: 27828422]
  21. Sci Adv. 2018 Aug 31;4(8):eaas9459 [PMID: 30182056]
  22. Angew Chem Int Ed Engl. 2006 Dec 11;45(48):8241-4 [PMID: 17099919]
  23. Nature. 2001 Mar 22;410(6827):450-3 [PMID: 11260708]
  24. Catheter Cardiovasc Interv. 2003 Nov;60(3):399-407 [PMID: 14571494]
  25. Int J Comput Dent. 2019;22(1):55-67 [PMID: 30848255]
  26. Materials (Basel). 2017 Jun 19;10(6): [PMID: 28773031]
  27. Biomaterials. 1998 Sep;19(18):1621-39 [PMID: 9839998]
  28. Clin Orthop Relat Res. 1992 Jan;(274):202-12 [PMID: 1729005]
  29. Adv Mater. 2013 Mar 6;25(9):1280-4 [PMID: 23288599]
  30. J Biomech. 1998 Oct;31(10):909-17 [PMID: 9840756]
  31. J Am Chem Soc. 2007 Jan 10;129(1):42-3 [PMID: 17199279]
  32. J Am Chem Soc. 2004 Jun 9;126(22):6876-7 [PMID: 15174851]
  33. Acta Biomater. 2012 Nov;8(11):3888-903 [PMID: 22765961]
  34. Nat Mater. 2010 Nov;9(11):904-7 [PMID: 20953182]
  35. Langmuir. 2013 Jun 25;29(25):8108-15 [PMID: 23738525]
  36. RSC Adv. 2018 Apr 24;8(28):15533-15546 [PMID: 35539484]

Grants

  1. DMR-1806142/National Science Foundation

Word Cloud

Created with Highcharts 10.0.0materialstechniquesmethodsdealloyingAMprocessingadditivemanufacturingmaterialcreatinguniquechallengescannanoporousmetalsnewfunctionalDealloyingphysicalarchitectureplaysintegralroledeterminingpropertiesfunctionalitymanynowexistfabricatingpartsshapesizecoupleemergedfacileeffectivestructures:reviewdiscussesprogressintegrationplatformtakeadvantagecapabilitiesestablishedfielduniquelycomplementary:usemakecomplexcustomizedshapes-forinstanceapplicationsbiomedicalimplantsmicrofluidics-butoccursimultaneouslyproducecompositenanoscalefeaturestwointerpenetratingphasesdiscussexperimentalimplementingfutureeffortsdirectedaddressdifficultiespremisecombiningsynergisticoffersavenues3DsynthesizedwaywillcontinuegrowindependentlytogethercommunityrealizespotentialcompellingcombinationChallengesOpportunitiesIntegratingMethodsAdditiveManufacturing

Similar Articles

Cited By (5)