Multiple Drug-Induced Stress Responses Inhibit Formation of Escherichia coli Biofilms.

Nataliya A Teteneva, Sergey V Mart'yanov, María Esteban-López, Jörg Kahnt, Timo Glatter, Alexander I Netrusov, Vladimir K Plakunov, Victor Sourjik
Author Information
  1. Nataliya A Teteneva: Max Planck Institute for Terrestrial Microbiology, Marburg, Germany. ORCID
  2. Sergey V Mart'yanov: Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
  3. María Esteban-López: Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
  4. Jörg Kahnt: Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
  5. Timo Glatter: Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
  6. Alexander I Netrusov: Department of Microbiology, Lomonosov Moscow State University, Moscow, Russia.
  7. Vladimir K Plakunov: Winogradsky Institute of Microbiology, Federal Research Center Fundamentals of Biotechnology, Russian Academy of Sciences, Moscow, Russia.
  8. Victor Sourjik: Max Planck Institute for Terrestrial Microbiology, Marburg, Germany victor.sourjik@synmikro.mpi-marburg.mpg.de. ORCID

Abstract

In most ecosystems, bacteria exist primarily as structured surface-associated biofilms that can be highly tolerant to antibiotics and thus represent an important health issue. Here, we explored drug repurposing as a strategy to identify new antibiofilm compounds, screening over 1,000 compounds from the Prestwick Chemical Library of approved drugs for specific activities that prevent biofilm formation by Most growth-inhibiting compounds, which include known antibacterial but also antiviral and other drugs, also reduced biofilm formation. However, we also identified several drugs that were biofilm inhibitory at doses where only a weak effect or no effect on planktonic growth could be observed. The activities of the most specific antibiofilm compounds were further characterized using gene expression analysis, proteomics, and microscopy. We observed that most of these drugs acted by repressing genes responsible for the production of curli, a major component of the biofilm matrix. This repression apparently occurred through the induction of several different stress responses, including DNA and cell wall damage, and homeostasis of divalent cations, demonstrating that biofilm formation can be inhibited through a variety of molecular mechanisms. One tested drug, tyloxapol, did not affect curli expression or cell growth but instead inhibited biofilm formation by suppressing bacterial attachment to the surface. The prevention of bacterial biofilm formation is one of the major current challenges in microbiology. Here, by systematically screening a large number of approved drugs for their ability to suppress biofilm formation by , we identified a number of prospective antibiofilm compounds. We further demonstrated different mechanisms of action for individual compounds, from induction of replicative stress to disbalance of cation homeostasis to inhibition of bacterial attachment to the surface. Our work demonstrates the potential of drug repurposing for the prevention of bacterial biofilm formation and suggests that also for other bacteria, the activity spectrum of antibiofilm compounds is likely to be broad.

Keywords

References

  1. Microbiol Mol Biol Rev. 2018 Oct 10;82(4): [PMID: 30305312]
  2. Structure. 2013 Jul 2;21(7):1149-57 [PMID: 23769666]
  3. Sci Rep. 2014 Jul 18;4:5749 [PMID: 25034786]
  4. Front Microbiol. 2018 Oct 25;9:2541 [PMID: 30410476]
  5. APMIS. 2020 Mar;128(3):242-250 [PMID: 31811739]
  6. Environ Microbiol. 2014 Jun;16(6):1455-71 [PMID: 24725389]
  7. CNS Neurosci Ther. 2012 Jan;18(1):41-6 [PMID: 21199452]
  8. iScience. 2019 Jun 28;16:145-154 [PMID: 31170626]
  9. Eur J Med Chem. 2019 Jan 1;161:154-178 [PMID: 30347328]
  10. Nat Methods. 2016 Sep;13(9):731-40 [PMID: 27348712]
  11. Front Microbiol. 2016 Oct 05;7:1568 [PMID: 27761132]
  12. Molecules. 2019 Jun 29;24(13): [PMID: 31261858]
  13. Nature. 2018 Mar 29;555(7698):623-628 [PMID: 29555994]
  14. Genes Dev. 2008 Sep 1;22(17):2434-46 [PMID: 18765794]
  15. ACS Infect Dis. 2018 Feb 9;4(2):93-106 [PMID: 29280609]
  16. Appl Environ Microbiol. 2010 Jun;76(12):3836-41 [PMID: 20418434]
  17. Microb Biotechnol. 2014 Nov;7(6):496-516 [PMID: 25351039]
  18. J Mycol Med. 2018 Sep;28(3):492-501 [PMID: 29650464]
  19. Pharm Res. 1986 Oct;3(5):298-301 [PMID: 24271714]
  20. Clin Immunol Immunopathol. 1995 Nov;77(2):201-5 [PMID: 7586728]
  21. Antimicrob Agents Chemother. 1989 Apr;33(4):479-83 [PMID: 2658792]
  22. Pharmacotherapy. 1983 Mar-Apr;3(2 Pt 1):82-100 [PMID: 6344037]
  23. ISME J. 2008 Jun;2(6):615-31 [PMID: 18309357]
  24. Lancet. 1986 Mar 15;1(8481):575-80 [PMID: 2869302]
  25. Nat Rev Microbiol. 2004 Feb;2(2):95-108 [PMID: 15040259]
  26. J Vis Exp. 2011 Jan 30;(47): [PMID: 21307833]
  27. Colloids Surf B Biointerfaces. 2014 Sep 1;121:92-8 [PMID: 24945607]
  28. Mikrobiologiia. 2007 Mar-Apr;76(2):149-63 [PMID: 17583210]
  29. FEMS Microbiol Rev. 2017 May 1;41(3):276-301 [PMID: 28369412]
  30. PLoS One. 2016 Jun 16;11(6):e0156999 [PMID: 27308826]
  31. mBio. 2013 Mar 19;4(2):e00103-13 [PMID: 23512962]
  32. Annu Rev Microbiol. 2000;54:49-79 [PMID: 11018124]
  33. J Bacteriol. 2013 Dec;195(24):5540-54 [PMID: 24097954]
  34. Nat Rev Microbiol. 2008 Jun;6(6):455-65 [PMID: 18483484]
  35. Acta Derm Venereol. 2010 May;90(3):239-45 [PMID: 20526539]
  36. Basic Clin Pharmacol Toxicol. 2018 Sep;123(3):236-246 [PMID: 29481714]
  37. Antimicrob Agents Chemother. 1987 Dec;31(12):1925-8 [PMID: 2830840]
  38. Nucleic Acids Res. 2019 Jan 8;47(D1):D442-D450 [PMID: 30395289]
  39. Nat Rev Microbiol. 2010 Sep;8(9):623-33 [PMID: 20676145]
  40. Curr Top Microbiol Immunol. 2008;322:249-89 [PMID: 18453280]
  41. Urology. 2006 Nov;68(5):942-6 [PMID: 17113884]
  42. Proc Natl Acad Sci U S A. 2013 Feb 12;110(7):2629-34 [PMID: 23359678]
  43. J Biol Chem. 2019 Nov 8;294(45):16978-16991 [PMID: 31586033]
  44. Nat Rev Microbiol. 2009 Apr;7(4):263-73 [PMID: 19287449]
  45. Curr Microbiol. 2017 Dec;74(12):1477-1489 [PMID: 28744570]
  46. Biochim Biophys Acta. 2014 Aug;1843(8):1551-8 [PMID: 24080089]
  47. Trends Microbiol. 2015 Nov;23(11):693-706 [PMID: 26439293]
  48. Proc Natl Acad Sci U S A. 2017 Dec 12;114(50):E10792-E10798 [PMID: 29183977]
  49. J Proteome Res. 2012 Nov 2;11(11):5145-56 [PMID: 23017020]
  50. Nat Methods. 2006 Aug;3(8):623-8 [PMID: 16862137]
  51. Microbiol Spectr. 2015 Aug;3(4): [PMID: 26350328]
  52. Cell Host Microbe. 2019 Jul 10;26(1):15-21 [PMID: 31295420]
  53. BMC Cancer. 2018 Apr 20;18(1):448 [PMID: 29678153]
  54. Antimicrob Agents Chemother. 2016 Sep 23;60(10):5663-72 [PMID: 27401577]

MeSH Term

Anti-Bacterial Agents
Biofilms
Escherichia coli
Stress, Physiological

Chemicals

Anti-Bacterial Agents