An SEIARD epidemic model for COVID-19 in Mexico: Mathematical analysis and state-level forecast.

Ugo Avila-Ponce de León, Ángel G C Pérez, Eric Avila-Vales
Author Information
  1. Ugo Avila-Ponce de León: Programa de Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
  2. Ángel G C Pérez: Facultad de Matemáticas, Universidad Autónoma de Yucatán, Anillo Periférico Norte, Tablaje Catastral 13615, Mérida, C.P. 97119, Yucatán, Mexico.
  3. Eric Avila-Vales: Facultad de Matemáticas, Universidad Autónoma de Yucatán, Anillo Periférico Norte, Tablaje Catastral 13615, Mérida, C.P. 97119, Yucatán, Mexico.

Abstract

We propose an SEIARD mathematical model to investigate the current outbreak of coronavirus disease (COVID-19) in Mexico. Our model incorporates the asymptomatic infected individuals, who represent the majority of the infected population (with symptoms or not) and could play an important role in spreading the virus without any knowledge. We calculate the basic reproduction number ( ) via the next-generation matrix method and estimate the per day infection, death and recovery rates. The local stability of the disease-free equilibrium is established in terms of . A sensibility analysis is performed to determine the relative importance of the model parameters to the disease transmission. We calibrate the parameters of the SEIARD model to the reported number of infected cases, fatalities and recovered cases for several states in Mexico by minimizing the sum of squared errors and attempt to forecast the evolution of the outbreak until November 2020.

Keywords

References

  1. Chaos Solitons Fractals. 2020 Sep;138:109988 [PMID: 32536763]
  2. Infect Dis Model. 2020 Feb 11;5:248-255 [PMID: 32099934]
  3. Quant Biol. 2020;8(1):11-19 [PMID: 32219006]
  4. Sci Rep. 2021 Feb 22;11(1):4327 [PMID: 33619337]
  5. Chaos Solitons Fractals. 2020 Oct;139:110057 [PMID: 32834610]
  6. Int J Infect Dis. 2020 Apr;93:211-216 [PMID: 32145465]
  7. Nat Microbiol. 2020 Apr;5(4):536-544 [PMID: 32123347]
  8. Appl Math Comput. 2021 Sep 1;404:126251 [PMID: 33828346]
  9. Chaos Solitons Fractals. 2020 May;134:109761 [PMID: 32308258]
  10. Respir Res. 2020 Mar 26;21(1):74 [PMID: 32216803]
  11. Rev Invest Clin. 2020;72(3):138-143 [PMID: 32584328]
  12. J Clin Med. 2020 Feb 07;9(2): [PMID: 32046137]
  13. Chaos Solitons Fractals. 2020 Oct;139:110072 [PMID: 32834616]

Word Cloud

Created with Highcharts 10.0.0modelSEIARDCOVID-19Mexicoinfectedanalysisoutbreakdiseasereproductionnumberparameterscasesforecastproposemathematicalinvestigatecurrentcoronavirusincorporatesasymptomaticindividualsrepresentmajoritypopulationsymptomsplayimportantrolespreadingviruswithoutknowledgecalculatebasicvianext-generationmatrixmethodestimateperdayinfectiondeathrecoveryrateslocalstabilitydisease-freeequilibriumestablishedtermssensibilityperformeddeterminerelativeimportancetransmissioncalibratereportedfatalitiesrecoveredseveralstatesminimizingsumsquarederrorsattemptevolutionNovember2020epidemicMexico:Mathematicalstate-levelDiseasedynamicsEffectivedailyratioSensitivity

Similar Articles

Cited By