Porous Poly(3-hydroxybutyrate) Scaffolds Prepared by Non-Solvent-Induced Phase Separation for Tissue Engineering.

Jiseon Kang, Ji-Young Hwang, Mongyoung Huh, Seok Il Yun
Author Information
  1. Jiseon Kang: Department of Chemical Engineering and Materials Science, Sangmyung University, Seoul, 03016 Korea.
  2. Ji-Young Hwang: Korea Institute of Carbon Convergence Technology, Jeonju-si, Jeonbuk, 54853 Korea.
  3. Mongyoung Huh: Korea Institute of Carbon Convergence Technology, Jeonju-si, Jeonbuk, 54853 Korea.
  4. Seok Il Yun: Department of Chemical Engineering and Materials Science, Sangmyung University, Seoul, 03016 Korea.

Abstract

Highly porous poly(3-hydroxybutyrate) (PHB) scaffolds were fabricated using non-solvent-induced phase separation with chloroform as the solvent and tetrahydrofuran as the non-solvent. The microporosity, nanofiber morphology, and mechanical strength of the scaffolds were adjusted by varying the fabrication parameters, such as the polymer concentration and solvent composition. The influence of these parameters on the structure and morphology of PHB organogels and scaffolds was elucidated using small-angle neutron scattering and scanning electron microscopy. The organogels and scaffolds in this study have a complex hierarchical structure, extending over a wide range of length scales. viability assays were performed using the human keratinocyte cell line (HaCaT), and all PHB scaffolds demonstrated the excellent cell viability. Microporosity had the greatest impact on HaCaT cell proliferation on PHB scaffolds, which was determined after a 3-day incubation period with scaffolds of different morphologies and mechanical properties. The superior cell viability and the controlled scaffold properties and morphologies suggested PHB scaffolds fabricated by non-solvent-induced phase separation using chloroform and tetrahydrofuran as promising biomaterials for the applications of tissue engineering, particularly of epidermal engineering.
Electronic Supplementary Material: Supplementary material is available in the online version of this article at 10.1007/s13233-020-8109-x.

Keywords

References

  1. J Biomed Mater Res. 2002 Dec 5;62(3):438-46 [PMID: 12209930]
  2. J Biomed Mater Res A. 2015 Feb;103(2):431-8 [PMID: 24677612]
  3. J Mater Chem B. 2014 Dec 7;2(45):7828-7848 [PMID: 32262073]
  4. ACS Biomater Sci Eng. 2017 Jul 10;3(7):1175-1194 [PMID: 33440508]
  5. Int J Nanomedicine. 2017 Feb 09;12:1143-1160 [PMID: 28223803]
  6. Acta Pharm. 2020 Mar 1;70(1):1-15 [PMID: 31677369]
  7. Mater Sci Eng C Mater Biol Appl. 2017 Jan 1;70(Pt 2):1107-1119 [PMID: 27772711]
  8. Int J Biol Macromol. 2018 Oct 1;117:1200-1210 [PMID: 29894790]
  9. Mater Sci Eng C Mater Biol Appl. 2017 Oct 1;79:917-929 [PMID: 28629097]
  10. J Biomed Nanotechnol. 2013 Aug;9(8):1383-92 [PMID: 23926805]
  11. Int J Biol Macromol. 2018 Dec;120(Pt A):1294-1305 [PMID: 30189278]
  12. Acta Biomater. 2013 Jun;9(6):6915-27 [PMID: 23416581]
  13. Biomaterials. 2008 Sep;29(27):3720-3728 [PMID: 18585779]
  14. Acta Biomater. 2009 Sep;5(7):2657-67 [PMID: 19375396]
  15. Expert Rev Med Devices. 2019 Jun;16(6):467-482 [PMID: 31058550]
  16. Int J Biol Macromol. 2016 May;86:810-9 [PMID: 26875534]
  17. Mater Sci Eng C Mater Biol Appl. 2017 Oct 1;79:15-22 [PMID: 28629001]
  18. Biomaterials. 2009 Apr;30(12):2252-8 [PMID: 19152974]
  19. J Biomed Mater Res A. 2003 Nov 1;67(2):531-7 [PMID: 14566795]
  20. J Biomed Mater Res B Appl Biomater. 2017 Aug;105(6):1667-1684 [PMID: 27080439]
  21. Biomaterials. 2008 Oct;29(28):3807-14 [PMID: 18597841]
  22. Biomaterials. 2010 May;31(14):3967-75 [PMID: 20153524]
  23. Biomaterials. 2009 Sep;30(25):4094-103 [PMID: 19481080]
  24. J Biomed Mater Res A. 2008 Jun 15;85(4):1072-81 [PMID: 17937418]
  25. J Biomater Sci Polym Ed. 2008;19(11):1521-33 [PMID: 18973727]

Word Cloud

Created with Highcharts 10.0.0scaffoldsPHBcellusingviabilitynon-solvent-inducedphaseseparation3-hydroxybutyratefabricatedchloroformsolventtetrahydrofuranmorphologymechanicalparametersstructureorganogelsHaCaTmorphologiespropertiesscaffoldengineeringSupplementaryHighlyporouspolynon-solventmicroporositynanofiberstrengthadjustedvaryingfabricationpolymerconcentrationcompositioninfluenceelucidatedsmall-angleneutronscatteringscanningelectronmicroscopystudycomplexhierarchicalextendingwiderangelengthscalesassaysperformedhumankeratinocytelinedemonstratedexcellentMicroporositygreatestimpactproliferationdetermined3-dayincubationperioddifferentsuperiorcontrolledsuggestedpromisingbiomaterialsapplicationstissueparticularlyepidermalElectronicMaterial:materialavailableonlineversionarticle101007/s13233-020-8109-xPorousPolyScaffoldsPreparedNon-Solvent-InducedPhaseSeparationTissueEngineeringmicroporesnanofibers

Similar Articles

Cited By