Impact of Viral Lysis on the Composition of Bacterial Communities and Dissolved Organic Matter in Deep-Sea Sediments.

Mara E Heinrichs, Dennis A Tebbe, Bernd Wemheuer, Jutta Niggemann, Bert Engelen
Author Information
  1. Mara E Heinrichs: Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany.
  2. Dennis A Tebbe: Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany.
  3. Bernd Wemheuer: Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of Göttingen, 37073 Göttingen, Germany. ORCID
  4. Jutta Niggemann: Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany.
  5. Bert Engelen: Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany. ORCID

Abstract

Viral lysis is a main mortality factor for bacteria in deep-sea sediments, leading to changing microbial community structures and the release of cellular components to the environment. Nature and fate of these compounds and the role of viruses for microbial diversity is largely unknown. We investigated the effect of viruses on the composition of bacterial communities and the pool of dissolved organic matter (DOM) by setting up virus-induction experiments using mitomycin C with sediments from the seafloor of the Bering Sea. At the sediment surface, no substantial prophage induction was detected, while incubations from 20 cm below seafloor showed a doubling of the virus-to-cell ratio. Ultra-high resolution mass spectrometry revealed an imprint of cell lysis on the molecular composition of DOM, showing an increase of molecular formulas typical for common biomolecules. More than 50% of these compounds were removed or transformed during incubation. The remaining material potentially contributed to the pool of refractory DOM. Next generation sequencing of the bacterial communities from the induction experiment showed a stable composition over time. In contrast, in the non-treated controls the abundance of dominant taxa (e.g., Gammaproteobacteria) increased at the expense of less abundant phyla. Thus, we conclude that viral lysis was an important driver in sustaining bacterial diversity, consistent with the "killing the winner" model.

Keywords

References

  1. Nucleic Acids Res. 2013 Jan 7;41(1):e1 [PMID: 22933715]
  2. Environ Microbiol. 2007 Feb;9(2):287-97 [PMID: 17222128]
  3. Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16213-6 [PMID: 22927371]
  4. Microbiol Mol Biol Rev. 2011 Jun;75(2):361-422 [PMID: 21646433]
  5. Front Microbiol. 2017 May 29;8:902 [PMID: 28611735]
  6. Science. 2001 May 4;292(5518):917-20 [PMID: 11340202]
  7. Chem Rev. 2006 Feb;106(2):277-301 [PMID: 16464006]
  8. Appl Environ Microbiol. 1986 Sep;52(3):504-9 [PMID: 16347148]
  9. Anal Chem. 2014 Aug 19;86(16):8376-82 [PMID: 25068187]
  10. Ann Rev Mar Sci. 2015;7:185-205 [PMID: 25062478]
  11. Environ Sci Process Impacts. 2016 Jul 13;18(7):918-27 [PMID: 27363664]
  12. Appl Environ Microbiol. 2006 Jul;72(7):4995-5001 [PMID: 16820498]
  13. Nature. 2008 Aug 28;454(7208):1084-7 [PMID: 18756250]
  14. Appl Environ Microbiol. 1984 Jan;47(1):49-55 [PMID: 6696422]
  15. Proc Natl Acad Sci U S A. 2014 May 27;111(21):7813-8 [PMID: 24825894]
  16. Oecologia. 2001 Oct;129(2):271-280 [PMID: 28547606]
  17. ISME J. 2014 Jul;8(7):1503-9 [PMID: 24430483]
  18. PLoS One. 2013 Apr 22;8(4):e61217 [PMID: 23630581]
  19. Chem Biol. 1995 Sep;2(9):575-9 [PMID: 9383461]
  20. Science. 2006 Nov 10;314(5801):932-4 [PMID: 17095684]
  21. Anal Chem. 2017 Apr 18;89(8):4382-4386 [PMID: 28333435]
  22. Anal Chem. 2003 Oct 15;75(20):5336-44 [PMID: 14710810]
  23. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  24. Proteomics. 2009 Jul;9(14):3677-97 [PMID: 19639587]
  25. Front Microbiol. 2017 Dec 18;8:2550 [PMID: 29326679]
  26. Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15527-33 [PMID: 19805210]
  27. Appl Environ Microbiol. 1993 Dec;59(12):4074-82 [PMID: 16349109]
  28. Microbiol Mol Biol Rev. 2005 Sep;69(3):440-61 [PMID: 16148306]
  29. ISME J. 2016 Nov;10(11):2744-2754 [PMID: 27015004]
  30. FEMS Microbiol Ecol. 2013 Jun;84(3):495-509 [PMID: 23346920]
  31. Bioinformatics. 2010 Oct 1;26(19):2460-1 [PMID: 20709691]
  32. ISME J. 2008 Jun;2(6):579-89 [PMID: 18521076]
  33. Nat Commun. 2019 Aug 6;10(1):3519 [PMID: 31388058]
  34. Curr Biol. 2012 Jan 24;22(2):124-8 [PMID: 22244998]
  35. Proc Natl Acad Sci U S A. 2015 Apr 21;112(16):E2014-9 [PMID: 25848024]
  36. Environ Microbiol Rep. 2011 Aug;3(4):459-65 [PMID: 23761308]
  37. Environ Microbiol. 2018 Aug;20(8):3001-3011 [PMID: 30047191]
  38. Nat Rev Microbiol. 2014 Jul;12(7):519-28 [PMID: 24931044]
  39. ISME J. 2016 Apr;10(4):979-89 [PMID: 26430855]
  40. Anal Chem. 2008 Dec 1;80(23):8908-19 [PMID: 19551926]
  41. J Bacteriol. 2015 Feb;197(3):410-9 [PMID: 25404701]
  42. ISME J. 2019 Oct;13(10):2551-2565 [PMID: 31227815]
  43. Microbiol Mol Biol Rev. 2010 Mar;74(1):42-57 [PMID: 20197498]
  44. Environ Microbiol. 2005 Jul;7(7):961-8 [PMID: 15946292]
  45. Nature. 2003 Aug 28;424(6952):1047-51 [PMID: 12944965]
  46. Nucleic Acids Res. 2009 Jan;37(Database issue):D141-5 [PMID: 19004872]
  47. Ann Rev Mar Sci. 2016;8:311-32 [PMID: 26209150]
  48. Nat Rev Microbiol. 2007 Oct;5(10):782-91 [PMID: 17853906]
  49. Nat Methods. 2010 May;7(5):335-6 [PMID: 20383131]
  50. Nature. 2005 Sep 15;437(7057):356-61 [PMID: 16163346]

MeSH Term

Bacteria
Bacteriolysis
Bacteriophages
Biodiversity
Geologic Sediments
Microbiota
Mitomycin
Oceans and Seas
Organic Chemicals
Prophages
Seawater
Virus Activation

Chemicals

Organic Chemicals
Mitomycin

Word Cloud

Created with Highcharts 10.0.0lysiscompositionbacterialDOMViralsedimentsmicrobialcompoundsvirusesdiversitycommunitiespoolvirus-inductionmitomycinCseafloorBeringSeainductionshowedmolecularmainmortalityfactorbacteriadeep-sealeadingchangingcommunitystructuresreleasecellularcomponentsenvironmentNaturefaterolelargelyunknowninvestigatedeffectdissolvedorganicmattersettingexperimentsusingsedimentsurfacesubstantialprophagedetectedincubations20cmdoublingvirus-to-cellratioUltra-highresolutionmassspectrometryrevealedimprintcellshowingincreaseformulastypicalcommonbiomolecules50%removedtransformedincubationremainingmaterialpotentiallycontributedrefractoryNextgenerationsequencingexperimentstabletimecontrastnon-treatedcontrolsabundancedominanttaxaegGammaproteobacteriaincreasedexpenselessabundantphylaThusconcludeviralimportantdriversustainingconsistent"killingwinner"modelImpactLysisCompositionBacterialCommunitiesDissolvedOrganicMatterDeep-SeaSedimentskillingwinnerprophages

Similar Articles

Cited By