Bacterial Communities of the Canola Rhizosphere: Network Analysis Reveals a Core Bacterium Shaping Microbial Interactions.

Jean-Baptiste Floc'h, Chantal Hamel, Newton Lupwayi, K Neil Harker, Mohamed Hijri, Marc St-Arnaud
Author Information
  1. Jean-Baptiste Floc'h: Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, Montreal, QC, Canada.
  2. Chantal Hamel: Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, Montreal, QC, Canada.
  3. Newton Lupwayi: Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.
  4. K Neil Harker: Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada.
  5. Mohamed Hijri: Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, Montreal, QC, Canada.
  6. Marc St-Arnaud: Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, Montreal, QC, Canada.

Abstract

The rhizosphere hosts a complex web of prokaryotes interacting with one another that may modulate crucial functions related to plant growth and health. Identifying the key factors structuring the prokaryotic community of the plant rhizosphere is a necessary step toward the enhancement of plant production and crop yield with beneficial associative microorganisms. We used a long-term field experiment conducted at three locations in the Canadian prairies to verify that: (1) the level of cropping system diversity influences the α- and β-diversity of the prokaryotic community of canola () rhizosphere; (2) the canola rhizosphere community has a stable prokaryotic core; and (3) some highly connected taxa of this community fit the description of hub-taxa. We sampled the rhizosphere of canola grown in monoculture, in a 2-phase rotation (canola-wheat), in a 3-phase rotation (pea-barley-canola), and in a highly diversified 6-phase rotation, five and eight years after cropping system establishment. We detected only one core bacterial Amplicon Sequence Variant (ASV) in the prokaryotic component of the microbiota of canola rhizosphere, a hub taxon identified as cf. sp. This ASV was also the only hub taxon found in the networks of interactions present in both years and at all three sites. We highlight a cohort of bacteria and archaea that were always connected with the core taxon in the network analyses.

Keywords

References

  1. Bioinformatics. 2011 Feb 1;27(3):431-2 [PMID: 21149340]
  2. Int J Syst Evol Microbiol. 2003 Jan;53(Pt 1):121-124 [PMID: 12656162]
  3. Mycorrhiza. 2017 Jan;27(1):13-22 [PMID: 27541158]
  4. New Phytol. 2015 Jun;206(4):1196-206 [PMID: 25655016]
  5. FEMS Microbiol Lett. 2014 Sep;358(1):44-54 [PMID: 25039790]
  6. Appl Environ Microbiol. 2012 Aug;78(16):5912-22 [PMID: 22729532]
  7. Microb Ecol. 2015 Jul;70(1):255-65 [PMID: 25586384]
  8. Curr Opin Microbiol. 2017 Jun;37:15-22 [PMID: 28437661]
  9. Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6548-53 [PMID: 23576752]
  10. Rev Argent Microbiol. 2016 Oct - Dec;48(4):342-346 [PMID: 27916328]
  11. ISME J. 2015 Nov;9(11):2349-59 [PMID: 25909975]
  12. Plant Physiol Biochem. 2016 Feb;99:39-48 [PMID: 26713550]
  13. PLoS One. 2011;6(8):e23321 [PMID: 21886785]
  14. Can J Microbiol. 2015 Apr;61(4):307-13 [PMID: 25776270]
  15. Funct Plant Biol. 2004 Jul;31(6):623-631 [PMID: 32688934]
  16. Genome Announc. 2015 Jun 11;3(3): [PMID: 26067978]
  17. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  18. FEMS Microbiol Ecol. 2011 Aug;77(2):285-94 [PMID: 21488909]
  19. Microb Ecol. 2001 Jul;42(1):11-21 [PMID: 12035077]
  20. ISME J. 2009 Sep;3(9):1004-11 [PMID: 19440233]
  21. Appl Environ Microbiol. 2017 Oct 31;83(22): [PMID: 28887416]
  22. Front Plant Sci. 2017 Aug 08;8:1381 [PMID: 28848583]
  23. PLoS Comput Biol. 2015 May 07;11(5):e1004226 [PMID: 25950956]
  24. PLoS Biol. 2016 Jan 20;14(1):e1002352 [PMID: 26788878]
  25. Front Microbiol. 2018 Jun 08;9:1188 [PMID: 29937756]
  26. Nat Rev Microbiol. 2012 Oct;10(10):717-25 [PMID: 22941505]
  27. PLoS Biol. 2016 Feb 12;14(2):e1002378 [PMID: 26871440]
  28. ISME J. 2012 May;6(5):1007-17 [PMID: 22134642]
  29. Environ Microbiol. 2015 Jan;17(1):239-52 [PMID: 25367329]
  30. BMC Bioinformatics. 2012 May 30;13:113 [PMID: 22646978]
  31. Sci Rep. 2017 Apr 04;7:44641 [PMID: 28374800]
  32. Int J Syst Evol Microbiol. 2016 Jan;66(1):9-37 [PMID: 26486726]
  33. Sci Total Environ. 2020 Jan 15;700:134418 [PMID: 31629269]
  34. J Anim Ecol. 2009 Jan;78(1):253-69 [PMID: 19120606]
  35. Ecol Lett. 2007 Jun;10(6):522-38 [PMID: 17498151]
  36. Can J Microbiol. 1961 Oct;7:759-67 [PMID: 13878001]
  37. Annu Rev Plant Biol. 2006;57:233-66 [PMID: 16669762]
  38. Curr Microbiol. 2019 Nov;76(11):1345-1354 [PMID: 31372732]
  39. Annu Rev Plant Biol. 2013;64:807-38 [PMID: 23373698]
  40. Microbiol Res. 2018 Mar;208:63-75 [PMID: 29551213]
  41. Microb Ecol. 2020 Nov;80(4):762-777 [PMID: 31897569]
  42. Mol Ecol. 2014 Mar;23(6):1571-1583 [PMID: 24148029]
  43. Phytopathology. 2008 Jun;98(6):666-72 [PMID: 18944290]

Word Cloud

Created with Highcharts 10.0.0rhizosphereprokaryoticcommunitycanolaplantcorerotationtaxononecropthreecroppingsystemhighlyconnectedyearsASVhubbacteriaarchaeahostscomplexwebprokaryotesinteractinganothermaymodulatecrucialfunctionsrelatedgrowthhealthIdentifyingkeyfactorsstructuringnecessarysteptowardenhancementproductionyieldbeneficialassociativemicroorganismsusedlong-termfieldexperimentconductedlocationsCanadianprairiesverifythat:1leveldiversityinfluencesα-β-diversity2stable3taxafitdescriptionhub-taxasampledgrownmonoculture2-phasecanola-wheat3-phasepea-barley-canoladiversified6-phasefiveeightestablishmentdetectedbacterialAmpliconSequenceVariantcomponentmicrobiotaidentifiedcfspalsofoundnetworksinteractionspresentsiteshighlightcohortalwaysnetworkanalysesBacterialCommunitiesCanolaRhizosphere:NetworkAnalysisRevealsCoreBacteriumShapingMicrobialInteractionsBrassicanapusagroecosystemrotationsmicrobialecology

Similar Articles

Cited By