A PML/RARα direct target atlas redefines transcriptional deregulation in acute promyelocytic leukemia.

Yun Tan, Xiaoling Wang, Huan Song, Yi Zhang, Rongsheng Zhang, Shufen Li, Wen Jin, Saijuan Chen, Hai Fang, Zhu Chen, Kankan Wang
Author Information
  1. Yun Tan: Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  2. Xiaoling Wang: Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  3. Huan Song: Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  4. Yi Zhang: Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  5. Rongsheng Zhang: Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  6. Shufen Li: Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  7. Wen Jin: Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  8. Saijuan Chen: Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  9. Hai Fang: Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  10. Zhu Chen: Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  11. Kankan Wang: Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Abstract

Transcriptional deregulation initiated by oncogenic fusion proteins plays a vital role in leukemia. The prevailing view is that the oncogenic fusion protein promyelocytic leukemia/retinoic acid receptor-α (PML/RARα), generated by the chromosome translocation t(15;17), functions as a transcriptional repressor in acute promyelocytic leukemia (APL). Here, we provide rich evidence of how PML/RARα drives oncogenesis through both repressive and activating functions, particularly the importance of the newly identified activation role for the leukemogenesis of APL. The activating function of PML/RARα is achieved by recruiting both abundant P300 and HDAC1 and by the formation of super-enhancers. All-trans retinoic acid and arsenic trioxide, 2 widely used drugs in APL therapy, exert synergistic effects on controlling super-enhancer-associated PML/RARα-regulated targets in APL cells. We use a series of in vitro and in vivo experiments to demonstrate that PML/RARα-activated target gene GFI1 is necessary for the maintenance of APL cells and that PML/RARα, likely oligomerized, transactivates GFI1 through chromatin conformation at the super-enhancer region. Finally, we profile GFI1 targets and reveal the interplay between GFI1 and PML/RARα on chromatin in coregulating target genes. Our study provides genomic insight into the dual role of fusion transcription factors in transcriptional deregulation to drive leukemia development, highlighting the importance of globally dissecting regulatory circuits.

References

  1. Cell. 2009 Sep 4;138(5):1019-31 [PMID: 19698979]
  2. N Engl J Med. 1998 Nov 5;339(19):1341-8 [PMID: 9801394]
  3. Blood. 2012 Oct 11;120(15):3058-68 [PMID: 22923494]
  4. EMBO Mol Med. 2014 May 01;6(5):640-50 [PMID: 24711541]
  5. N Engl J Med. 2013 May 30;368(22):2059-74 [PMID: 23634996]
  6. Genome Biol. 2008;9(9):R137 [PMID: 18798982]
  7. Science. 2010 Apr 9;328(5975):240-3 [PMID: 20378816]
  8. Sci Rep. 2017 Nov 16;7(1):15720 [PMID: 29147018]
  9. PLoS One. 2012;7(10):e46529 [PMID: 23056333]
  10. Nature. 2007 May 24;447(7143):407-12 [PMID: 17522673]
  11. Nat Cell Biol. 2016 Jan;18(1):21-32 [PMID: 26619147]
  12. Cell Rep. 2015 Nov 17;13(7):1444-1455 [PMID: 26549458]
  13. Nat Rev Genet. 2014 Feb;15(2):93-106 [PMID: 24366184]
  14. Cell. 2005 Nov 18;123(4):581-92 [PMID: 16286007]
  15. Cell. 2010 Apr 30;141(3):432-45 [PMID: 20434984]
  16. EMBO J. 1992 Feb;11(2):629-42 [PMID: 1311253]
  17. Cancer Cell. 2014 Dec 8;26(6):909-922 [PMID: 25490451]
  18. J Biol Chem. 2008 Sep 5;283(36):24420-5 [PMID: 18621739]
  19. Cell. 1994 Jan 28;76(2):333-43 [PMID: 8293467]
  20. Nature. 2004 Oct 21;431(7011):1002-7 [PMID: 15457180]
  21. Blood. 2012 Nov 8;120(19):4038-48 [PMID: 22983443]
  22. J Clin Invest. 2009 Jun;119(6):1714-26 [PMID: 19451695]
  23. Nat Med. 2008 Dec;14(12):1333-42 [PMID: 19029980]
  24. Cancer Cell. 2010 Feb 17;17(2):186-97 [PMID: 20159610]
  25. Nucleic Acids Res. 2016 Jan 4;44(D1):D917-24 [PMID: 26507857]
  26. EMBO J. 1993 Aug;12(8):3171-82 [PMID: 8393784]
  27. Blood. 2003 Nov 15;102(10):3727-36 [PMID: 12893766]
  28. Blood. 1998 Apr 15;91(8):2961-8 [PMID: 9531607]
  29. Leukemia. 2010 Nov;24(11):1834-43 [PMID: 20861919]
  30. Leukemia. 2016 Jun;30(6):1237-45 [PMID: 26847026]
  31. Nat Rev Genet. 2010 Feb;11(2):109-23 [PMID: 20084085]
  32. Cell. 2013 Nov 7;155(4):934-47 [PMID: 24119843]
  33. Oncogene. 2014 May 22;33(21):2700-8 [PMID: 23770850]
  34. Blood. 2014 Feb 6;123(6):894-904 [PMID: 24363398]
  35. Cell. 2017 Feb 23;168(5):890-903.e15 [PMID: 28162770]
  36. Nucleic Acids Res. 2016 Oct 14;44(18):8655-8670 [PMID: 27325688]
  37. Leukemia. 2019 Jan;33(1):110-121 [PMID: 29925903]
  38. Nat Commun. 2018 Mar 29;9(1):1277 [PMID: 29599493]
  39. Blood. 1996 May 15;87(10):4025-39 [PMID: 8639758]
  40. Blood. 2008 Mar 1;111(5):2505-15 [PMID: 18299451]
  41. Mol Cell Biol. 2007 Aug;27(16):5819-34 [PMID: 17562868]
  42. Nat Genet. 2002 Mar;30(3):295-300 [PMID: 11810106]
  43. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  44. Cancer Cell. 2010 Jul 13;18(1):88-98 [PMID: 20609355]
  45. Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3716-21 [PMID: 20133705]
  46. Mol Cell Probes. 2013 Feb;27(1):1-5 [PMID: 22906630]
  47. Cell. 2013 Jul 18;154(2):442-51 [PMID: 23849981]
  48. J Exp Med. 2018 Dec 3;215(12):3194-3212 [PMID: 30463877]
  49. Cancer Cell. 2013 Feb 11;23(2):200-14 [PMID: 23410974]
  50. Blood. 2005 Oct 1;106(7):2452-61 [PMID: 15972450]
  51. Blood. 1991 Mar 1;77(5):909-24 [PMID: 1847312]
  52. Biochem J. 2016 Oct 1;473(19):3355-69 [PMID: 27480105]
  53. Blood. 2007 Mar 15;109(6):2356-64 [PMID: 17095621]
  54. Immunity. 2003 Jan;18(1):109-20 [PMID: 12530980]
  55. Cancer Cell. 2010 Feb 17;17(2):173-85 [PMID: 20159609]
  56. Nat Rev Cancer. 2010 Nov;10(11):775-83 [PMID: 20966922]
  57. Haematologica. 2018 Sep;103(9):e395-e399 [PMID: 29674496]
  58. Blood. 2009 May 28;113(22):5466-75 [PMID: 19346496]
  59. J Exp Med. 2013 Apr 8;210(4):647-53 [PMID: 23509325]
  60. Cancer Res. 1996 Jul 1;56(13):2945-8 [PMID: 8674046]
  61. Nucleic Acids Res. 2018 Jan 9;46(1):120-133 [PMID: 29059365]
  62. Nat Methods. 2007 Nov;4(11):895-901 [PMID: 17971780]
  63. Curr Opin Oncol. 2010 Nov;22(6):646-55 [PMID: 20805748]
  64. Oncotarget. 2017 Feb 21;8(8):12855-12865 [PMID: 28030795]
  65. Nat Commun. 2019 Aug 22;10(1):3789 [PMID: 31439836]

MeSH Term

Animals
Cell Line, Tumor
Gene Expression Regulation, Leukemic
Humans
Leukemia, Promyelocytic, Acute
Mice, Inbred NOD
Mice, SCID
Oncogene Proteins, Fusion
Promyelocytic Leukemia Protein
Retinoic Acid Receptor alpha
Transcriptional Activation
Tumor Cells, Cultured
Mice

Chemicals

Oncogene Proteins, Fusion
Promyelocytic Leukemia Protein
RARA protein, human
Retinoic Acid Receptor alpha
promyelocytic leukemia-retinoic acid receptor alpha fusion oncoprotein
PML protein, human

Word Cloud

Created with Highcharts 10.0.0PML/RARαAPLleukemiaGFI1deregulationfusionrolepromyelocytictranscriptionaltargetoncogenicacidfunctionsacuteactivatingimportancetargetscellschromatinTranscriptionalinitiatedproteinsplaysvitalprevailingviewproteinleukemia/retinoicreceptor-αgeneratedchromosometranslocationt1517repressorproviderichevidencedrivesoncogenesisrepressiveparticularlynewlyidentifiedactivationleukemogenesisfunctionachievedrecruitingabundantP300HDAC1formationsuper-enhancersAll-transretinoicarsenictrioxide2widelyuseddrugstherapyexertsynergisticeffectscontrollingsuper-enhancer-associatedPML/RARα-regulateduseseriesvitrovivoexperimentsdemonstratePML/RARα-activatedgenenecessarymaintenancelikelyoligomerizedtransactivatesconformationsuper-enhancerregionFinallyprofilerevealinterplaycoregulatinggenesstudyprovidesgenomicinsightdualtranscriptionfactorsdrivedevelopmenthighlightinggloballydissectingregulatorycircuitsdirectatlasredefines

Similar Articles

Cited By