Habitat complexity influences selection of thermal environment in a common coral reef fish.

Tiffany J Nay, Jacob L Johansen, Jodie L Rummer, John F Steffensen, Morgan S Pratchett, Andrew S Hoey
Author Information
  1. Tiffany J Nay: ARC Centre of Excellence for Coral Reef Studies, James Cook University, James Cook Dr., Townsville, QLD 4811, Australia.
  2. Jacob L Johansen: Hawaii Institute of Marine Biology, University of Hawaii, 46-007 Lilipuna Rd, Kaneohe, HI 96744, USA.
  3. Jodie L Rummer: ARC Centre of Excellence for Coral Reef Studies, James Cook University, James Cook Dr., Townsville, QLD 4811, Australia.
  4. John F Steffensen: Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, Helsingør, 3000, Denmark.
  5. Morgan S Pratchett: ARC Centre of Excellence for Coral Reef Studies, James Cook University, James Cook Dr., Townsville, QLD 4811, Australia.
  6. Andrew S Hoey: ARC Centre of Excellence for Coral Reef Studies, James Cook University, James Cook Dr., Townsville, QLD 4811, Australia.

Abstract

Coral reef species, like most tropical species, are sensitive to increasing environmental temperatures, with many species already living close to their thermal maxima. Ocean warming and the increasing frequency and intensity of marine heatwaves are challenging the persistence of reef-associated species through both direct physiological effects of elevated water temperatures and the degradation and loss of habitat structure following disturbance. Understanding the relative importance of habitat degradation and ocean warming in shaping species distributions is critical in predicting the likely biological effects of global warming. Using an automated shuttle box system, we investigated how habitat complexity influences the selection of thermal environments for a common coral reef damselfish, . In the absence of any habitat (i.e. control), avoided temperatures below 22.9 ± 0.8°C and above 31.9 ± 0.6°C, with a preferred temperature ( ) of 28.1 ± 0.9°C. When complex habitat was available, individual occupied temperatures down to 4.3°C lower (mean ± SE; threshold: 18.6 ± 0.7°C; : 18.9 ± 1.0°C) than control fish. Conversely, in complex habitats occupied similar upper temperatures as control fish (threshold: 31.7 ± 0.4°C; preference: 28.3 ± 0.7°C). Our results show that the availability of complex habitat can influence the selection of thermal environment by a coral reef fish, but only at temperatures below their thermal preference. The limited scope of to occupy warmer environments, even when associated with complex habitat, suggests that habitat restoration efforts in areas that continue to warm may not be effective in retaining populations of and similar species. This species may have to move to cooler (e.g. deeper or higher latitude) habitats under predicted future warming. The integration of habitat quality and thermal environment into conservation efforts will be essential to conserve of coral reef fish populations under future ocean warming scenarios.

Keywords

References

  1. PLoS One. 2010 Oct 11;5(10):e13299 [PMID: 20949020]
  2. Nature. 2015 Dec 3;528(7580):88-92 [PMID: 26560025]
  3. PLoS One. 2011;6(12):e29340 [PMID: 22242115]
  4. Ecol Lett. 2019 Apr;22(4):685-696 [PMID: 30740843]
  5. Glob Chang Biol. 2019 Aug;25(8):2739-2750 [PMID: 31210001]
  6. Nature. 2017 Mar 15;543(7645):373-377 [PMID: 28300113]
  7. Science. 2010 Jun 18;328(5985):1523-8 [PMID: 20558709]
  8. Glob Chang Biol. 2018 Jul;24(7):3158-3169 [PMID: 29658157]
  9. Glob Chang Biol. 2018 Jul;24(7):3117-3129 [PMID: 29633512]
  10. Science. 2018 Jan 5;359(6371):80-83 [PMID: 29302011]
  11. Proc Biol Sci. 2009 Aug 22;276(1669):3019-25 [PMID: 19515663]
  12. Ecol Lett. 2010 Jun;13(6):685-94 [PMID: 20412279]
  13. Ecol Evol. 2012 Sep;2(9):2168-80 [PMID: 23139876]
  14. Can J Zool. 1974 Apr;52(4):447-56 [PMID: 4832961]
  15. Nature. 2018 Apr;556(7702):492-496 [PMID: 29670282]
  16. PLoS One. 2020 May 6;15(5):e0231817 [PMID: 32374734]
  17. Nature. 2019 May;569(7754):108-111 [PMID: 31019302]
  18. Mar Pollut Bull. 2016 Apr 30;105(2):466-72 [PMID: 26478453]
  19. Science. 2008 Jun 6;320(5881):1296-7 [PMID: 18535231]
  20. Science. 2017 Mar 31;355(6332): [PMID: 28360268]
  21. Glob Chang Biol. 2017 Feb;23(2):566-577 [PMID: 27593976]
  22. Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):13791-13796 [PMID: 27849585]
  23. Glob Chang Biol. 2014 Apr;20(4):1055-66 [PMID: 24281840]
  24. Glob Chang Biol. 2017 Sep;23(9):3437-3448 [PMID: 28247459]
  25. PLoS One. 2020 Jan 30;15(1):e0226631 [PMID: 31999709]
  26. Nature. 2002 Mar 28;416(6879):389-95 [PMID: 11919621]
  27. Glob Chang Biol. 2016 Mar;22(3):974-89 [PMID: 26700211]
  28. Science. 2011 Nov 25;334(6059):1040 [PMID: 22116846]
  29. Sci Rep. 2017 Oct 25;7(1):13985 [PMID: 29070842]
  30. Nature. 2018 Aug;560(7716):92-96 [PMID: 30046108]
  31. Ecology. 2011 Dec;92(12):2285-98 [PMID: 22352168]
  32. Proc Natl Acad Sci U S A. 2006 May 30;103(22):8425-9 [PMID: 16709673]