Comparison of Artificial Intelligence based approaches to cell function prediction.

Sarala Padi, Petru Manescu, Nicholas Schaub, Nathan Hotaling, Carl Simon, Kapil Bharti, Peter Bajcsy
Author Information
  1. Sarala Padi: ITL, National Institute of Standards & Technology, Gaithersburg, MD, USA.
  2. Petru Manescu: ITL, National Institute of Standards & Technology, Gaithersburg, MD, USA.
  3. Nicholas Schaub: National Eye Institute, NIH, Bethesda, MD, USA.
  4. Nathan Hotaling: National Eye Institute, NIH, Bethesda, MD, USA.
  5. Carl Simon: MML, National Institute of Standards & Technology, Gaithersburg, MD, USA.
  6. Kapil Bharti: National Eye Institute, NIH, Bethesda, MD, USA.
  7. Peter Bajcsy: ITL, National Institute of Standards & Technology, Gaithersburg, MD, USA.

Abstract

Predicting Retinal Pigment Epithelium (RPE) cell functions in stem cell implants using non-invasive bright field microscopy imaging is a critical task for clinical deployment of stem cell therapies. Such cell function predictions can be carried out using Artificial Intelligence (AI) based models. In this paper we used Traditional Machine Learning (TML) and Deep Learning (DL) based AI models for cell function prediction tasks. TML models depend on feature engineering and DL models perform feature engineering automatically but have higher modeling complexity. This work aims at exploring the tradeoffs between three approaches using TML and DL based models for RPE cell function prediction from microscopy images and at understanding the accuracy relationship between pixel-, cell feature-, and implant label-level accuracies of models. Among the three compared approaches to cell function prediction, the direct approach to cell function prediction from images is slightly more accurate in comparison to indirect approaches using intermediate segmentation and/or feature engineering steps. We also evaluated accuracy variations with respect to model selections (five TML models and two DL models) and model configurations (with and without transfer learning). Finally, we quantified the relationships between segmentation accuracy and the number of samples used for training a model, segmentation accuracy and cell feature error, and cell feature error and accuracy of implant labels. We concluded that for the RPE cell data set, there is a monotonic relationship between the number of training samples and image segmentation accuracy, and between segmentation accuracy and cell feature error, but there is no such a relationship between segmentation accuracy and accuracy of RPE implant labels.

Keywords

References

  1. Nat Biotechnol. 2018 Apr;36(4):328-337 [PMID: 29553577]
  2. Med Image Anal. 2003 Mar;7(1):95-108 [PMID: 12467724]
  3. Sci Transl Med. 2019 Jan 16;11(475): [PMID: 30651323]
  4. JAMA Ophthalmol. 2014 Mar;132(3):338-45 [PMID: 24626824]
  5. IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651 [PMID: 27244717]
  6. BMC Med Imaging. 2015 Aug 12;15:29 [PMID: 26263899]
  7. Mol Pharm. 2017 Dec 4;14(12):4462-4475 [PMID: 29096442]
  8. J Lab Autom. 2015 Apr;20(2):107-26 [PMID: 25586998]
  9. Neuron. 2012 Jul 12;75(1):26-39 [PMID: 22794258]
  10. IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149 [PMID: 27295650]
  11. Bioinformatics. 2006 Apr 1;22(7):830-6 [PMID: 16410319]
  12. Biol Proced Online. 2017 May 10;19:4 [PMID: 28490975]
  13. BMC Bioinformatics. 2014 Dec 30;15:431 [PMID: 25547324]
  14. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:2903-6 [PMID: 25570598]
  15. Inf Fusion. 2019 Oct;50:71-91 [PMID: 30467459]
  16. BMC Bioinformatics. 2007 Jun 19;8:210 [PMID: 17578580]
  17. Brief Funct Genomics. 2019 Feb 14;18(1):41-57 [PMID: 30265280]
  18. Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:4965-8 [PMID: 18003121]
  19. BMC Bioinformatics. 2013 Mar 09;14:90 [PMID: 23497329]
  20. Mol Ther Nucleic Acids. 2018 Jun 1;11:337-344 [PMID: 29858068]
  21. Bioinformatics. 2016 Jun 15;32(12):i52-i59 [PMID: 27307644]
  22. BMC Bioinformatics. 2018 Oct 3;19(1):365 [PMID: 30285608]
  23. Physiol Rev. 2005 Jul;85(3):845-81 [PMID: 15987797]
  24. J Opt Soc Am A Opt Image Sci Vis. 2013 Dec 1;30(12):2595-604 [PMID: 24323021]
  25. IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2481-2495 [PMID: 28060704]
  26. J Clin Invest. 2020 Feb 3;130(2):1010-1023 [PMID: 31714897]
  27. J Cell Sci. 2013 Dec 15;126(Pt 24):5529-39 [PMID: 24259662]
  28. Curr Stem Cell Rep. 2015 Jun;1(2):79-91 [PMID: 26146605]

Grants

  1. 9999-NIST/Intramural NIST DOC
  2. T32 DE007057/NIDCR NIH HHS

Word Cloud

Created with Highcharts 10.0.0cellaccuracymodelsfunctionsegmentationpredictionfeatureRPEusingbasedTMLDLapproachesengineeringrelationshipimplantmodelerrorCellRetinalPigmentEpitheliumstemmicroscopyArtificialIntelligenceAIusedLearningDeepthreeimageslearningnumbersamplestraininglabelsPredictingfunctionsimplantsnon-invasivebrightfieldimagingcriticaltaskclinicaldeploymenttherapiespredictionscancarriedpaperTraditionalMachinetasksdependperformautomaticallyhighermodelingcomplexityworkaimsexploringtradeoffsunderstandingpixel-feature-label-levelaccuraciesAmongcompareddirectapproachslightlyaccuratecomparisonindirectintermediateand/orstepsalsoevaluatedvariationsrespectselectionsfivetwoconfigurationswithouttransferFinallyquantifiedrelationshipsconcludeddatasetmonotonicimageComparisonAge-relatedmaculardegenerationTrans-EpithelialResistanceVascularEndothelialGrowthFactor

Similar Articles

Cited By (2)