Coral cover a stronger driver of reef fish trophic biomass than fishing.

Garry R Russ, Justin R Rizzari, Rene A Abesamis, Angel C Alcala
Author Information
  1. Garry R Russ: College of Science and Engineering and ARC Centre for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia.
  2. Justin R Rizzari: School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, Geelong, Victoria, 3216, Australia.
  3. Rene A Abesamis: Silliman University Angelo King Center for Research and Environmental Management, Silliman University, Dumaguete City, 6200, Philippines.
  4. Angel C Alcala: Silliman University Angelo King Center for Research and Environmental Management, Silliman University, Dumaguete City, 6200, Philippines.

Abstract

An influential paradigm in coral reef ecology is that fishing causes trophic cascades through reef fish assemblages, resulting in reduced herbivory and thus benthic phase shifts from coral to algal dominance. Few long-term field tests exist of how fishing affects the trophic structure of coral reef fish assemblages, and how such changes affect the benthos. Alternatively, benthic change itself may drive the trophic structure of reef fish assemblages. Reef fish trophic structure and benthic cover were quantified almost annually from 1983 to 2014 at two small Philippine islands (Apo, Sumilon). At each island a No-Take Marine Reserve (NTMR) site and a site open to subsistence reef fishing were monitored. Thirteen trophic groups were identified. Large planktivores often accounted for >50% of assemblage biomass. Significant NTMR effects were detected at each island for total fish biomass, but for only 2 of 13 trophic components: generalist large predators and large planktivores. Fishing-induced changes in biomass of these components had no effect on live hard coral (HC) cover. In contrast, HC cover affected biomass of 11 of 13 trophic components significantly. Positive associations with HC cover were detected for total fish biomass, generalist large predators, piscivores, obligate coral feeders, large planktivores, and small planktivores. Negative associations with HC cover were detected for large benthic foragers, detritivores, excavators, scrapers, and sand feeders. These associations of fish biomass to HC cover were most clear when environmental disturbances (e.g., coral bleaching, typhoons) reduced HC cover, often quickly (1-2 yr), and when HC recovered, often slowly (5-10 yr). As HC cover changed, the biomass of 11 trophic components of the fish assemblage changed. Benthic and fish assemblages were distinct at all sites from the outset, remaining so for 31 yr, despite differences in fishing pressure and disturbance history. HC cover alone explained ~30% of the variability in reef fish trophic structure, whereas fishing alone explained 24%. Furthermore, HC cover affected more trophic groups more strongly than fishing. Management of coral reefs must include measures to maintain coral reef habitats, not just measures to reduce fishing by NTMRs.

Keywords

References

  1. Science. 2018 Jan 5;359(6371):80-83 [PMID: 29302011]
  2. Sci Rep. 2016 Nov 02;6:35817 [PMID: 27804977]
  3. Nature. 2015 Feb 5;518(7537):94-7 [PMID: 25607371]
  4. PeerJ. 2016 May 31;4:e2084 [PMID: 27280075]
  5. Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):6167-6175 [PMID: 28584096]
  6. Science. 2007 Dec 14;318(5857):1737-42 [PMID: 18079392]
  7. Curr Biol. 2017 Jan 23;27(2):231-236 [PMID: 28089513]
  8. PLoS One. 2017 Dec 7;12(12):e0188515 [PMID: 29216194]
  9. Science. 2003 Aug 15;301(5635):929-33 [PMID: 12920289]
  10. Ambio. 2006 Aug;35(5):245-54 [PMID: 16989509]
  11. Nat Commun. 2016 Feb 16;7:10581 [PMID: 26881874]
  12. Nat Ecol Evol. 2019 Feb;3(2):183-190 [PMID: 30420743]
  13. Ecol Evol. 2014 Feb;4(4):337-54 [PMID: 24634720]
  14. Science. 1999 Sep 3;285(5433):1505-10 [PMID: 10498537]
  15. PLoS One. 2010 Aug 20;5(8):e12327 [PMID: 20808833]
  16. Curr Biol. 2017 Jun 5;27(11):R484-R489 [PMID: 28586684]
  17. J Exp Mar Biol Ecol. 2000 Jul 30;250(1-2):257-289 [PMID: 10969172]
  18. Science. 2003 Nov 28;302(5650):1502-4; author reply 1502-4 [PMID: 14645826]
  19. Science. 1994 Sep 9;265(5178):1547-51 [PMID: 17801530]
  20. Conserv Biol. 2015 Apr;29(2):418-29 [PMID: 25185522]
  21. Glob Chang Biol. 2018 Jan;24(1):e67-e79 [PMID: 28944520]
  22. Curr Biol. 2015 Apr 20;25(8):983-92 [PMID: 25819564]
  23. PLoS One. 2015 Apr 14;10(4):e0126004 [PMID: 25875218]
  24. Science. 2001 Jul 27;293(5530):629-37 [PMID: 11474098]
  25. Trends Ecol Evol. 2008 Oct;23(10):555-63 [PMID: 18722687]
  26. Nature. 2017 Mar 15;543(7645):373-377 [PMID: 28300113]
  27. Ann Rev Mar Sci. 2019 Jan 3;11:307-334 [PMID: 30606097]
  28. Science. 1978 Mar 24;199(4335):1302-10 [PMID: 17840770]
  29. Conserv Biol. 2007 Oct;21(5):1291-300 [PMID: 17883494]
  30. J Fish Biol. 2018 Nov;93(5):887-900 [PMID: 30246331]
  31. Science. 2011 Jul 15;333(6040):301-6 [PMID: 21764740]
  32. Ecology. 2009 Jun;90(6):1478-84 [PMID: 19569362]
  33. Science. 1998 Feb 6;279(5352):860-3 [PMID: 9452385]
  34. Nat Commun. 2020 Apr 24;11(1):2000 [PMID: 32332721]
  35. Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):17230-3 [PMID: 21949381]
  36. Proc Natl Acad Sci U S A. 2004 May 25;101(21):8251-3 [PMID: 15150414]
  37. Science. 2009 Jul 31;325(5940):578-85 [PMID: 19644114]
  38. Trends Ecol Evol. 1988 May;3(5):106-11 [PMID: 21227159]
  39. Nature. 2015 Apr 16;520(7547):341-4 [PMID: 25855298]
  40. Trends Ecol Evol. 2005 Feb;20(2):74-80 [PMID: 16701346]
  41. Ecol Appl. 2021 Jan;31(1):e02224 [PMID: 32866333]
  42. PLoS One. 2014 Aug 20;9(8):e105384 [PMID: 25140801]
  43. Mar Pollut Bull. 2013 Nov 15;76(1-2):28-31 [PMID: 24060472]
  44. Nature. 2004 Jun 24;429(6994):827-33 [PMID: 15215854]
  45. Science. 2003 Aug 15;301(5635):955-8 [PMID: 12920296]
  46. Sci Adv. 2019 Mar 06;5(3):eaav6420 [PMID: 30854434]
  47. Science. 2006 Jan 6;311(5757):98-101 [PMID: 16400152]

MeSH Term

Animals
Anthozoa
Biomass
Conservation of Natural Resources
Coral Reefs
Ecosystem
Fishes

Word Cloud

Created with Highcharts 10.0.0trophicfishcovercoralHCreeffishingbiomasslargeassemblagesbenthicstructureplanktivoresoftendetectedcomponentsassociationsreducedchangessmallislandNTMRsitegroupsassemblageeffectstotal13generalistpredatorsaffected11feedersenvironmentaldisturbanceschangedaloneexplainedmeasuresinfluentialparadigmecologycausescascadesresultingherbivorythusphaseshiftsalgaldominancelong-termfieldtestsexistaffectsaffectbenthosAlternativelychangemaydriveReefquantifiedalmostannually19832014twoPhilippineislandsApoSumilonNo-TakeMarineReserveopensubsistencemonitoredThirteenidentifiedLargeaccounted>50%Significant2components:Fishing-inducedeffectlivehardcontrastsignificantlyPositivepiscivoresobligateNegativeforagersdetritivoresexcavatorsscraperssandclearegbleachingtyphoonsquickly1-2 yrrecoveredslowly5-10 yrBenthicdistinctsitesoutsetremaining31 yrdespitedifferencespressuredisturbancehistory~30%variabilitywhereas24%FurthermorestronglyManagementreefsmustincludemaintainhabitatsjustreduceNTMRsCoralstrongerdriverPhilippinesno-takemarinereserves

Similar Articles

Cited By