Layer-By-Layer Assemblies of Biopolymers: Build-Up, Mechanical Stability and Molecular Dynamics.

Jack Campbell, Anna S Vikulina
Author Information
  1. Jack Campbell: School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK. ORCID
  2. Anna S Vikulina: Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Mühlenberg 13, 14476 Potsdam-Golm, Germany. ORCID

Abstract

Rapid development of versatile layer-by-layer technology has resulted in important breakthroughs in the understanding of the nature of molecular interactions in multilayer assemblies made of polyelectrolytes. Nowadays, polyelectrolyte multilayers (PEM) are considered to be non-equilibrium and highly dynamic structures. High interest in biomedical applications of PEMs has attracted attention to PEMs made of biopolymers. Recent studies suggest that biopolymer dynamics determines the fate and the properties of such PEMs; however, deciphering, predicting and controlling the dynamics of polymers remains a challenge. This review brings together the up-to-date knowledge of the role of molecular dynamics in multilayers assembled from biopolymers. We discuss how molecular dynamics determines the properties of these PEMs from the nano to the macro scale, focusing on its role in PEM formation and non-enzymatic degradation. We summarize the factors allowing the control of molecular dynamics within PEMs, and therefore to tailor polymer multilayers on demand.

Keywords

References

  1. J Antimicrob Chemother. 2013 Nov;68(11):2576-86 [PMID: 23798672]
  2. Front Chem. 2019 Apr 04;7:179 [PMID: 31019908]
  3. Langmuir. 2006 Jan 31;22(3):1193-200 [PMID: 16430283]
  4. Mol Pharm. 2017 Oct 2;14(10):3322-3330 [PMID: 28841795]
  5. Int J Mol Sci. 2017 Feb 09;18(2): [PMID: 28208793]
  6. Macromol Rapid Commun. 2014 Aug;35(16):1408-13 [PMID: 25042776]
  7. J Colloid Interface Sci. 2019 Jun 1;545:330-339 [PMID: 30901672]
  8. Int J Artif Organs. 2018 Apr;41(4):223-235 [PMID: 29528795]
  9. J Phys Chem B. 2012 Nov 15;116(45):13561-7 [PMID: 23098318]
  10. Biomacromolecules. 2003 Sep-Oct;4(5):1191-7 [PMID: 12959583]
  11. Phys Chem Chem Phys. 2016 Mar 21;18(11):7866-74 [PMID: 26911320]
  12. J Mol Graph Model. 2016 Nov;70:246-252 [PMID: 27770747]
  13. ACS Appl Mater Interfaces. 2018 May 30;10(21):17714-17721 [PMID: 29726672]
  14. Langmuir. 2015 Apr 7;31(13):3889-96 [PMID: 25768113]
  15. ACS Appl Mater Interfaces. 2009 Aug;1(8):1705-10 [PMID: 20355786]
  16. J Control Release. 2010 Nov 20;148(1):e70-1 [PMID: 21529637]
  17. Biomacromolecules. 2009 Sep 14;10(9):2632-9 [PMID: 19694426]
  18. J Colloid Interface Sci. 2017 Jan 1;485:288-295 [PMID: 27684786]
  19. Soft Matter. 2018 Feb 28;14(9):1699-1708 [PMID: 29424853]
  20. Biomacromolecules. 2010 Oct 11;11(10):2788-96 [PMID: 20815399]
  21. Adv Mater. 2012 Feb 21;24(8):1095-100 [PMID: 22266798]
  22. J Mater Chem B. 2017 Nov 21;5(43):8532-8541 [PMID: 32264521]
  23. Micromachines (Basel). 2018 Oct 25;9(11): [PMID: 30715046]
  24. Acta Biomater. 2015 Mar;15:139-49 [PMID: 25575853]
  25. Q Rev Biophys. 2015 Aug;48(3):323-87 [PMID: 26314367]
  26. J Mater Chem B. 2014 Sep 14;2(34):5558-5568 [PMID: 32262189]
  27. Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12531-5 [PMID: 12237412]
  28. Mater Sci Eng C Mater Biol Appl. 2019 Nov;104:109898 [PMID: 31499960]
  29. J Phys Chem B. 2018 Jan 25;122(3):1323-1333 [PMID: 29257689]
  30. Microsc Res Tech. 2005 Jan 1;66(1):43-57 [PMID: 15816028]
  31. Langmuir. 2008 Aug 5;24(15):7842-7 [PMID: 18582004]
  32. ACS Appl Mater Interfaces. 2016 Sep 21;8(37):24345-9 [PMID: 27607839]
  33. Soft Matter. 2007 Dec 11;4(1):122-130 [PMID: 32907092]
  34. Biomacromolecules. 2009 May 11;10(5):1212-6 [PMID: 19323511]
  35. Macromol Biosci. 2016 Jan;16(1):95-105 [PMID: 26309129]
  36. Lab Chip. 2012 Apr 21;12(8):1434-6 [PMID: 22382798]
  37. Beilstein J Nanotechnol. 2012;3:778-88 [PMID: 23213641]
  38. J Phys Chem B. 2012 May 3;116(17):5269-78 [PMID: 22486371]
  39. ACS Nano. 2019 Jun 25;13(6):6151-6169 [PMID: 31124656]
  40. ACS Appl Mater Interfaces. 2017 Nov 8;9(44):38908-38918 [PMID: 29035502]
  41. J Phys Chem B. 2005 Oct 6;109(39):18250-9 [PMID: 16853348]
  42. J Phys Chem B. 2006 Oct 5;110(39):19443-9 [PMID: 17004803]
  43. Macromol Biosci. 2009 Mar 10;9(3):268-78 [PMID: 18855946]
  44. Biomacromolecules. 2019 Oct 14;20(10):4015-4025 [PMID: 31449398]
  45. Langmuir. 2009 Jan 20;25(2):1224-32 [PMID: 19072113]
  46. Trends Biochem Sci. 2007 Sep;32(9):407-14 [PMID: 17764955]
  47. ACS Appl Mater Interfaces. 2017 Apr 12;9(14):12264-12271 [PMID: 28322547]
  48. J Am Chem Soc. 2017 Oct 18;139(41):14656-14667 [PMID: 28981268]
  49. Langmuir. 2011 May 3;27(9):5700-4 [PMID: 21466156]
  50. Front Physiol. 2017 Aug 07;8:574 [PMID: 28824462]
  51. Macromol Rapid Commun. 2012 Oct 26;33(20):1775-9 [PMID: 22806940]
  52. Langmuir. 2009 Dec 15;25(24):14037-43 [PMID: 19670892]
  53. Sci Rep. 2019 Jun 5;9(1):8308 [PMID: 31165751]
  54. Macromol Biosci. 2019 Nov;19(11):e1900181 [PMID: 31531939]
  55. ACS Appl Mater Interfaces. 2016 Jun 22;8(24):14958-65 [PMID: 26646202]
  56. Mater Sci Eng C Mater Biol Appl. 2020 Jul;112:110868 [PMID: 32409037]
  57. J Mater Chem B. 2016 Jan 28;4(4):672-682 [PMID: 32262949]
  58. Langmuir. 2007 Nov 6;23(23):11603-10 [PMID: 17918976]
  59. Phys Chem Chem Phys. 2018 Jul 18;20(28):19082-19086 [PMID: 29972161]
  60. Macromol Biosci. 2015 Oct;15(10):1357-63 [PMID: 25981869]
  61. Langmuir. 2006 Apr 25;22(9):4376-83 [PMID: 16618190]
  62. Biomed Mater. 2007 Mar;2(1):S45-51 [PMID: 18458419]
  63. ACS Appl Mater Interfaces. 2015 Sep 30;7(38):21315-25 [PMID: 26348458]
  64. Langmuir. 2010 Mar 2;26(5):3242-51 [PMID: 19921830]
  65. Adv Healthc Mater. 2014 Mar;3(3):433-40 [PMID: 23983205]
  66. J Colloid Interface Sci. 2017 Feb 1;487:107-117 [PMID: 27756000]
  67. Acta Biomater. 2016 Sep 1;41:86-99 [PMID: 27188244]
  68. Adv Funct Mater. 2008;18(9):1378-1389 [PMID: 18841249]
  69. Polymers (Basel). 2019 May 25;11(5): [PMID: 31130626]
  70. Langmuir. 2007 Feb 13;23(4):1898-904 [PMID: 17279672]
  71. J Am Chem Soc. 2013 May 22;135(20):7636-46 [PMID: 23672490]
  72. Colloids Surf B Biointerfaces. 2016 Sep 1;145:328-337 [PMID: 27209385]
  73. Nanoscale. 2019 Feb 7;11(6):2878-2891 [PMID: 30688341]
  74. J Colloid Interface Sci. 2006 Jun 1;298(1):59-65 [PMID: 16386269]
  75. Soft Matter. 2015 Mar 7;11(9):1794-9 [PMID: 25609027]
  76. J Biomed Mater Res A. 2011 Jan;96(1):132-41 [PMID: 21105161]
  77. Langmuir. 2019 Jul 2;35(26):8565-8573 [PMID: 30726090]
  78. Carbohydr Polym. 2018 Mar 15;184:144-153 [PMID: 29352905]
  79. Macromol Biosci. 2018 Feb;18(2): [PMID: 29231289]
  80. Langmuir. 2013 Mar 26;29(12):4140-7 [PMID: 23470204]
  81. Int J Mol Sci. 2020 May 25;21(10): [PMID: 32466274]
  82. Polymers (Basel). 2020 May 17;12(5): [PMID: 32429499]
  83. J Biomed Mater Res A. 2019 Jun;107(6):1324-1339 [PMID: 30719831]
  84. ACS Macro Lett. 2013 Oct 15;2(10):865-868 [PMID: 35607005]
  85. Biomacromolecules. 2013 May 13;14(5):1653-60 [PMID: 23590116]
  86. Langmuir. 2007 Dec 18;23(26):13046-52 [PMID: 18004897]
  87. J Colloid Interface Sci. 2006 Jul 15;299(2):608-16 [PMID: 16564534]
  88. Polymers (Basel). 2015 Dec 31;8(1): [PMID: 30979104]
  89. Biomaterials. 2005 Nov;26(33):6684-92 [PMID: 15946736]
  90. Langmuir. 2005 Nov 22;21(24):11232-40 [PMID: 16285796]
  91. Biomacromolecules. 2004 Sep-Oct;5(5):1908-16 [PMID: 15360305]
  92. Langmuir. 2009 Dec 15;25(24):13809-19 [PMID: 20560550]
  93. Eur J Pharm Sci. 2009 May 12;37(2):160-71 [PMID: 19429423]
  94. Chemphyschem. 2010 Mar 15;11(4):822-9 [PMID: 20157913]
  95. Micromachines (Basel). 2019 May 29;10(6): [PMID: 31146472]
  96. ACS Appl Mater Interfaces. 2014 Sep 10;6(17):14745-66 [PMID: 24968359]
  97. Langmuir. 2016 Feb 9;32(5):1347-59 [PMID: 26766428]
  98. Macromol Biosci. 2017 Aug;17(8): [PMID: 28547877]
  99. Phys Chem Chem Phys. 2015 May 21;17(19):12771-7 [PMID: 25906292]
  100. Beilstein J Nanotechnol. 2020 Mar 27;11:508-532 [PMID: 32274289]
  101. Biomacromolecules. 2007 Dec;8(12):3705-11 [PMID: 17994698]
  102. Colloids Surf B Biointerfaces. 2016 Nov 1;147:343-350 [PMID: 27552029]
  103. ACS Macro Lett. 2011 Nov 30;2012(1):127-130 [PMID: 23019538]
  104. Macromol Biosci. 2020 Jul;20(7):e2000081 [PMID: 32484303]
  105. Mater Sci Eng C Mater Biol Appl. 2015 Jan;46:374-80 [PMID: 25492000]
  106. Langmuir. 2004 Jan 20;20(2):448-58 [PMID: 15743090]
  107. J Colloid Interface Sci. 2012 Dec 15;388(1):191-200 [PMID: 22958851]
  108. Soft Matter. 2016 Jan 28;12(4):1032-40 [PMID: 26565521]
  109. Langmuir. 2015 Oct 20;31(41):11318-28 [PMID: 26421873]
  110. Acta Biomater. 2013 May;9(5):6468-80 [PMID: 23261924]
  111. Chem Soc Rev. 2016 May 31;45(11):3088-121 [PMID: 27003471]
  112. Macromol Rapid Commun. 2019 Mar;40(5):e1800200 [PMID: 29770514]
  113. Chem Soc Rev. 2012 Sep 21;41(18):6103-24 [PMID: 22695830]
  114. J Phys Chem B. 2007 Jul 26;111(29):8572-81 [PMID: 17461569]
  115. Biomaterials. 2009 Sep;30(27):4463-70 [PMID: 19520425]
  116. Adv Mater. 2018 Jul;30(27):e1801097 [PMID: 29786885]
  117. Biomacromolecules. 2009 Feb 9;10(2):433-42 [PMID: 19199579]
  118. Phys Chem Chem Phys. 2016 Mar 7;18(9):6691-700 [PMID: 26871977]
  119. Langmuir. 2019 Jul 2;35(26):8574-8583 [PMID: 30964686]
  120. Langmuir. 2012 May 8;28(18):7249-57 [PMID: 22509757]
  121. Chemphyschem. 2009 Jan 12;10(1):137-43 [PMID: 18846593]
  122. Biomacromolecules. 2003 Nov-Dec;4(6):1773-83 [PMID: 14606908]
  123. Biopolymers. 2016 Oct;105(10):669 [PMID: 27327606]
  124. Biomed Mater. 2016 May 20;11(3):035008 [PMID: 27200488]
  125. Biochemistry (Mosc). 2003 Feb;68(2):236-41 [PMID: 12693971]
  126. Biomacromolecules. 2015 Nov 9;16(11):3584-93 [PMID: 26477358]
  127. J Colloid Interface Sci. 2014 Jun 1;423:76-84 [PMID: 24703671]
  128. Biomacromolecules. 2011 Apr 11;12(4):1322-31 [PMID: 21381785]
  129. Langmuir. 2018 Jul 31;34(30):8709-8730 [PMID: 29481757]
  130. Cytometry A. 2016 Apr;89(4):325-7 [PMID: 27101317]
  131. Biomacromolecules. 2005 May-Jun;6(3):1353-9 [PMID: 15877352]
  132. Langmuir. 2011 Jun 21;27(12):7537-48 [PMID: 21574585]
  133. Colloids Surf B Biointerfaces. 2016 Nov 1;147:54-64 [PMID: 27485157]
  134. IET Nanobiotechnol. 2017 Dec;11(8):903-908 [PMID: 29155388]
  135. Langmuir. 2016 May 3;32(17):4229-38 [PMID: 27052835]
  136. Colloids Surf B Biointerfaces. 2018 Oct 1;170:312-321 [PMID: 29936384]
  137. Langmuir. 2006 Nov 21;22(24):9994-10002 [PMID: 17106991]
  138. Biomacromolecules. 2008 Jul;9(7):2021-8 [PMID: 18564872]
  139. Mater Sci Eng C Mater Biol Appl. 2020 Apr;109:110493 [PMID: 32228953]
  140. Phys Rev Lett. 2004 Jul 16;93(3):037801 [PMID: 15323871]
  141. Micromachines (Basel). 2018 Jun 19;9(6): [PMID: 30424240]
  142. Biomacromolecules. 2010 Mar 8;11(3):713-20 [PMID: 20108937]
  143. Langmuir. 2012 Aug 28;28(34):12527-35 [PMID: 22889012]
  144. Macromol Biosci. 2013 Oct;13(10):1379-88 [PMID: 23861285]
  145. Rep Prog Phys. 2018 Feb;81(2):026601 [PMID: 29303117]
  146. Biomacromolecules. 2014 May 12;15(5):1602-11 [PMID: 24666097]

Grants

  1. LIGHTOPLEX-747245/Horizon 2020 Framework Programme
  2. NTU Bursary/Nottingham Trent University

Word Cloud

Created with Highcharts 10.0.0PEMsdynamicsmolecularmultilayersmadepolyelectrolytePEMbiopolymersdeterminespropertiesroledegradationRapiddevelopmentversatilelayer-by-layertechnologyresultedimportantbreakthroughsunderstandingnatureinteractionsmultilayerassembliespolyelectrolytesNowadaysconsiderednon-equilibriumhighlydynamicstructuresHighinterestbiomedicalapplicationsattractedattentionRecentstudiessuggestbiopolymerfatehoweverdecipheringpredictingcontrollingpolymersremainschallengereviewbringstogetherup-to-dateknowledgeassembleddiscussnanomacroscalefocusingformationnon-enzymaticsummarizefactorsallowingcontrolwithinthereforetailorpolymerdemandLayer-By-LayerAssembliesBiopolymers:Build-UpMechanicalStabilityMolecularDynamicsdiffusionfilmgrowththinfilms

Similar Articles

Cited By