Testing for context-dependent effects of prenatal thyroid hormones on offspring survival and physiology: an experimental temperature manipulation.

Bin-Yan Hsu, Tom Sarraude, Nina Cossin-Sevrin, Mélanie Crombecque, Antoine Stier, Suvi Ruuskanen
Author Information
  1. Bin-Yan Hsu: Section of Ecology, Department of Biology, University of Turku, Turku, Finland. biyahs@utu.fi.
  2. Tom Sarraude: Section of Ecology, Department of Biology, University of Turku, Turku, Finland.
  3. Nina Cossin-Sevrin: Section of Ecology, Department of Biology, University of Turku, Turku, Finland.
  4. Mélanie Crombecque: Section of Ecology, Department of Biology, University of Turku, Turku, Finland.
  5. Antoine Stier: Section of Ecology, Department of Biology, University of Turku, Turku, Finland.
  6. Suvi Ruuskanen: Section of Ecology, Department of Biology, University of Turku, Turku, Finland.

Abstract

Maternal effects via hormonal transfer from the mother to the offspring provide a tool to translate environmental cues to the offspring. Experimental manipulations of maternally transferred hormones have yielded increasingly contradictory results, which may be explained by differential effects of hormones under different environmental contexts. Yet context-dependent effects have rarely been experimentally tested. We therefore studied whether maternally transferred thyroid hormones (THs) exert context-dependent effects on offspring survival and physiology by manipulating both egg TH levels and post-hatching nest temperature in wild pied flycatchers (Ficedula hypoleuca) using a full factorial design. We found no clear evidence for context-dependent effects of prenatal THs related to postnatal temperature on growth, survival and potential underlying physiological responses (plasma TH levels, oxidative stress and mitochondrial density). We conclude that future studies should test for other key environmental conditions, such as food availability, to understand potential context-dependent effects of maternally transmitted hormones on offspring, and their role in adapting to changing environments.

References

  1. Gen Comp Endocrinol. 2016 Mar 1;228:60-68 [PMID: 26874222]
  2. Biol Rev Camb Philos Soc. 2010 Nov;85(4):703-27 [PMID: 20105154]
  3. Mol Cell Endocrinol. 2011 Aug 6;342(1-2):1-7 [PMID: 21664416]
  4. Philos Trans R Soc Lond B Biol Sci. 2019 Apr 15;374(1770):20180115 [PMID: 30966885]
  5. Glob Chang Biol. 2018 Jan;24(1):13-34 [PMID: 29024256]
  6. J Chromatogr B Analyt Technol Biomed Life Sci. 2018 Sep 1;1093-1094:24-30 [PMID: 29980100]
  7. Biol Rev Camb Philos Soc. 2018 Aug;93(3):1499-1517 [PMID: 29573376]
  8. Horm Behav. 2016 May;81:38-44 [PMID: 27056104]
  9. Front Endocrinol (Lausanne). 2019 Feb 08;10:66 [PMID: 30800099]
  10. Poult Sci. 2018 Aug 1;97(8):2926-2933 [PMID: 29750260]
  11. Biosci Rep. 2018 Jul 2;38(4): [PMID: 29784871]
  12. Zool Stud. 2016 Sep 6;55:e40 [PMID: 31966185]
  13. Ecol Lett. 2019 Oct;22(10):1620-1628 [PMID: 31353805]
  14. Crit Rev Toxicol. 2007 Jan-Feb;37(1-2):163-93 [PMID: 17364708]
  15. Proc Biol Sci. 2015 Aug 7;282(1812):20151028 [PMID: 26203001]
  16. J Comp Physiol B. 2014 Dec;184(8):1021-9 [PMID: 25183199]
  17. Funct Ecol. 2018 Aug;32(8):1995-2007 [PMID: 30344358]
  18. Endocrinology. 2012 Nov;153(11):5309-24 [PMID: 22968645]
  19. BMC Biotechnol. 2008 Feb 12;8:12 [PMID: 18269737]
  20. Gen Comp Endocrinol. 2014 Jul 1;203:69-85 [PMID: 24685768]
  21. Biol Lett. 2019 Nov 29;15(11):20190536 [PMID: 31718511]
  22. Trends Ecol Evol. 2006 Jan;21(1):38-46 [PMID: 16701468]
  23. Philos Trans R Soc Lond B Biol Sci. 2012 Jun 19;367(1596):1647-64 [PMID: 22566673]
  24. Prenat Diagn. 2020 Aug;40(9):1077-1084 [PMID: 32181913]
  25. Oecologia. 2005 Jul;144(3):499-507 [PMID: 15891832]
  26. Gen Comp Endocrinol. 2013 Sep 1;190:68-75 [PMID: 23631902]
  27. Gen Comp Endocrinol. 2017 Jan 1;240:174-181 [PMID: 27793722]
  28. Compr Physiol. 2016 Sep 15;6(4):1591-1607 [PMID: 27783852]
  29. Mol Cell Endocrinol. 2021 Jan 1;519:111088 [PMID: 33227349]
  30. Gen Comp Endocrinol. 2013 Oct 1;192:2-14 [PMID: 23524004]
  31. Gen Comp Endocrinol. 2016 Sep 1;235:29-37 [PMID: 27255366]
  32. Oxid Med Cell Longev. 2013;2013:218145 [PMID: 24386502]
  33. Physiol Biochem Zool. 2020 Jul/Aug;93(4):255-266 [PMID: 32412834]
  34. Oecologia. 2014 Jul;175(3):791-800 [PMID: 24805201]
  35. Physiol Biochem Zool. 2018 May/Jun;91(3):904-916 [PMID: 29613831]
  36. Science. 2013 Jun 7;340(6137):1215-7 [PMID: 23599265]
  37. J Comp Physiol B. 2018 May;188(3):373-391 [PMID: 29119278]
  38. Integr Comp Biol. 2017 Sep 1;57(3):437-449 [PMID: 28957523]
  39. Oecologia. 2015 Dec;179(4):999-1010 [PMID: 26314343]
  40. Am Nat. 2008 Oct;172(4):E135-49 [PMID: 18793091]
  41. J Evol Biol. 2015 Aug;28(8):1476-88 [PMID: 26079258]
  42. Horm Behav. 2013 Aug;64(3):494-500 [PMID: 23891687]
  43. Ecol Lett. 2019 Nov;22(11):1976-1986 [PMID: 31436014]

MeSH Term

Animals
Animals, Newborn
Female
Growth and Development
Ovum
Pregnancy
Prenatal Exposure Delayed Effects
Songbirds
Thyroid Hormones

Chemicals

Thyroid Hormones

Word Cloud

Created with Highcharts 10.0.0effectsoffspringhormonescontext-dependentenvironmentalmaternallysurvivaltemperaturetransferredthyroidTHsTHlevelsprenatalpotentialMaternalviahormonaltransfermotherprovidetooltranslatecuesExperimentalmanipulationsyieldedincreasinglycontradictoryresultsmayexplaineddifferentialdifferentcontextsYetrarelyexperimentallytestedthereforestudiedwhetherexertphysiologymanipulatingeggpost-hatchingnestwildpiedflycatchersFicedulahypoleucausingfullfactorialdesignfoundclearevidencerelatedpostnatalgrowthunderlyingphysiologicalresponsesplasmaoxidativestressmitochondrialdensityconcludefuturestudiestestkeyconditionsfoodavailabilityunderstandtransmittedroleadaptingchangingenvironmentsTestingphysiology:experimentalmanipulation

Similar Articles

Cited By