Enriched gradient recovery for interface solutions of the Poisson-Boltzmann equation.

George Borleske, Y C Zhou
Author Information
  1. George Borleske: Department of Mathematics, Colorado State University, Fort Collins, CO 80523, United States of America.
  2. Y C Zhou: Department of Mathematics, Colorado State University, Fort Collins, CO 80523, United States of America.

Abstract

Accurate calculation of electrostatic potential and gradient on the molecular surface is highly desirable for the continuum and hybrid modeling of large scale deformation of biomolecules in solvent. In this article a new numerical method is proposed to calculate these quantities on the dielectric interface from the numerical solutions of the Poisson-Boltzmann equation. Our method reconstructs a potential field locally in the least square sense on the polynomial basis enriched with Green's functions, the latter characterize the Coulomb potential induced by charges near the position of reconstruction. This enrichment resembles the decomposition of electrostatic potential into singular Coulomb component and the regular reaction field in the Generalized Born methods. Numerical experiments demonstrate that the enrichment recovery produces drastically more accurate and stable potential gradients on molecular surfaces compared to classical recovery techniques.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19314-9 [PMID: 17148613]
  2. SIAM J Appl Math. 2013;73(1):594-616 [PMID: 23885130]
  3. J Comput Chem. 2003 Nov 15;24(14):1691-702 [PMID: 12964188]
  4. SIAM J Numer Anal. 2017;55(2):570-597 [PMID: 28983130]
  5. Annu Rev Biophys. 2019 May 6;48:275-296 [PMID: 30857399]
  6. Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Oct;82(4 Pt 1):041923 [PMID: 21230329]
  7. J Comput Phys. 2011 Jan 20;230(2):435-457 [PMID: 21088761]
  8. J Math Anal Appl. 2008 Apr 1;340(1):135-164 [PMID: 19461946]
  9. J Phys Chem B. 1998 Apr 30;102(18):3586-616 [PMID: 24889800]
  10. Q Rev Biophys. 2012 Nov;45(4):427-91 [PMID: 23217364]
  11. J Phys Chem B. 2008 Jan 17;112(2):270-5 [PMID: 18052268]
  12. SIAM J Sci Comput. 2011 Jan 1;33(2):826-848 [PMID: 21660123]
  13. Biophys J. 2009 May 6;96(9):3543-54 [PMID: 19413960]
  14. Biophys J. 2006 Aug 15;91(4):1248-63 [PMID: 16731564]
  15. J Chem Phys. 2004 Jan 8;120(2):903-11 [PMID: 15267926]
  16. Annu Rev Biophys Biophys Chem. 1990;19:301-32 [PMID: 2194479]
  17. Commun Comput Phys. 2012;11(1):179-214 [PMID: 21949541]
  18. Science. 1995 May 26;268(5214):1144-9 [PMID: 7761829]
  19. J Chem Phys. 2007 Sep 21;127(11):114106 [PMID: 17887827]
  20. J Comput Chem. 2004 Dec;25(16):2049-64 [PMID: 15481091]
  21. J Mol Biol. 1985 Aug 5;184(3):503-16 [PMID: 4046024]
  22. SIAM J Appl Math. 2011;71(6):2093-2111 [PMID: 24058212]

Grants

  1. R01 GM117593/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0potentialrecoveryPoisson-BoltzmannequationelectrostaticgradientmolecularnumericalmethodinterfacesolutionsfieldCoulombenrichmentmethodsNumericalAccuratecalculationsurfacehighlydesirablecontinuumhybridmodelinglargescaledeformationbiomoleculessolventarticlenewproposedcalculatequantitiesdielectricreconstructslocallyleastsquaresensepolynomialbasisenrichedGreen'sfunctionslattercharacterizeinducedchargesnearpositionreconstructionresemblesdecompositionsingularcomponentregularreactionGeneralizedBornexperimentsdemonstrateproducesdrasticallyaccuratestablegradientssurfacescomparedclassicaltechniquesEnrichedBiomolecularelectrostaticsGradientHighaccuracyInterfacesolution

Similar Articles

Cited By

No available data.