Altered Intrinsic Brain Activities in Patients with Diabetic Retinopathy Using Amplitude of Low-frequency Fluctuation: A Resting-state fMRI Study.

Chen-Xing Qi, Xin Huang, Yin Shen
Author Information
  1. Chen-Xing Qi: Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People's Republic of China. ORCID
  2. Xin Huang: Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People's Republic of China. ORCID
  3. Yin Shen: Eye Center, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People's Republic of China. ORCID

Abstract

OBJECTIVE: The current study aimed to apply the amplitude of low-frequency fluctuation (ALFF) method for investigating the spontaneous brain activity alterations and their relationships with clinical features in patients with diabetic retinopathy (DR).
PATIENTS AND METHODS: In total, 35 patients with DR (18 males and 17 females) and 38 healthy control (HC) subjects (18 males and 20 females) were enrolled in this study. All participants underwent resting-state functional magnetic resonance imaging (rs-fMRI) scanning, respectively. The ALFF method was used to assess the spontaneous brain activity, while the mean ALFF signal values of patients with DR and HCs were classified by the receiver operating characteristic (ROC) curve. Correlation analysis was performed to calculate the relationship between the observed mean ALFF values of the altered regions in patients with DR and their clinical features.
RESULTS: Compared with the HCs, patients with DR had significantly lower ALFF values in the left and right middle occipital gyrus (MOG). In contrast, patients with DR showed higher ALFF values in the left cerebellum (CER), left inferior temporal gyrus (ITG) and left hippocampus (Hipp). However, no relationship was observed between the mean ALFF signal values of the altered regions and clinical manifestations in the patients with DR.
CONCLUSION: We mainly found that patients with DR showed abnormal intrinsic brain activities in the left and right MOG, left CER, left ITG and left Hipp, which might provide useful information for explaining neural mechanisms in patients with DR.

Keywords

References

  1. Prog Retin Eye Res. 2012 Jan;31(1):89-119 [PMID: 22108059]
  2. Diabetes. 2010 Nov;59(11):2883-9 [PMID: 20798334]
  3. Neuroimage. 2019 Oct 15;200:644-658 [PMID: 31252056]
  4. Neuron. 2008 Jan 24;57(2):178-201 [PMID: 18215617]
  5. Clin Interv Aging. 2009;4:101-7 [PMID: 19503772]
  6. Bull World Health Organ. 2004 Nov;82(11):844-51 [PMID: 15640920]
  7. BMC Psychiatry. 2018 Nov 26;18(1):370 [PMID: 30477561]
  8. J Diabetes Investig. 2015 Jan;6(1):21-3 [PMID: 25621129]
  9. AJNR Am J Neuroradiol. 2001 Aug;22(7):1326-33 [PMID: 11498421]
  10. J Neurosci. 2014 Nov 26;34(48):16065-75 [PMID: 25429147]
  11. Cortex. 2010 Jul-Aug;46(7):831-44 [PMID: 20152963]
  12. Int J Mol Sci. 2016 Sep 07;17(9): [PMID: 27618014]
  13. J Alzheimers Dis. 2014;41(3):925-35 [PMID: 24705547]
  14. Ophthalmology. 2003 Sep;110(9):1677-82 [PMID: 13129861]
  15. PLoS One. 2017 Aug 31;12(8):e0183965 [PMID: 28859133]
  16. Br J Ophthalmol. 2019 Nov;103(11):1605-1609 [PMID: 31645330]
  17. Nature. 2015 Oct 15;526(7573):439-42 [PMID: 26469054]
  18. Radiology. 2012 Jul;264(1):187-95 [PMID: 22509052]
  19. Neuron. 2012 Jan 12;73(1):171-82 [PMID: 22243755]
  20. Nat Neurosci. 2013 Feb;16(2):130-8 [PMID: 23354386]
  21. Clin Exp Ophthalmol. 2016 May;44(4):260-77 [PMID: 26716602]
  22. Brain Dev. 2007 Mar;29(2):83-91 [PMID: 16919409]
  23. J Anat. 2005 Apr;206(4):319-48 [PMID: 15817102]
  24. Invest Ophthalmol Vis Sci. 2014 Dec 18;56(1):322-9 [PMID: 25525176]
  25. Neuroradiology. 2017 Nov;59(11):1121-1131 [PMID: 28831531]
  26. Diabetes Care. 2012 Mar;35(3):556-64 [PMID: 22301125]
  27. J Cogn Neurosci. 2015 Dec;27(12):2406-15 [PMID: 26284992]
  28. Curr Med Sci. 2018 Dec;38(6):968-975 [PMID: 30536057]
  29. Diabetologia. 2006 Oct;49(10):2474-80 [PMID: 16703329]
  30. Neuroreport. 2018 Oct 17;29(15):1323-1332 [PMID: 30113921]
  31. PLoS One. 2014 Oct 01;9(10):e108883 [PMID: 25272033]
  32. Cell. 2004 Jan 23;116(2):337-50 [PMID: 14744442]
  33. Neurobiol Aging. 2014 Sep;35(9):2107-17 [PMID: 24767950]
  34. Diabetes. 2012 Jul;61(7):1814-21 [PMID: 22438575]
  35. AJNR Am J Neuroradiol. 2013 Sep;34(9):1692-6 [PMID: 23598834]
  36. Conscious Cogn. 2013 Jun;22(2):479-85 [PMID: 23518233]
  37. Eur Rev Med Pharmacol Sci. 2012 Jan;16(1):126-31 [PMID: 22338559]
  38. J Neurosci. 2012 Mar 21;32(12):4230-9 [PMID: 22442085]
  39. Early Hum Dev. 2018 Mar;118:1-7 [PMID: 29413869]
  40. Acta Radiol. 2020 Jun;61(6):813-820 [PMID: 31604375]

Word Cloud

Created with Highcharts 10.0.0patientsDRleftALFFvaluesbrainclinicalmeanstudyamplitudelow-frequencymethodspontaneousactivityfeaturesdiabeticretinopathy18malesfemalesfunctionalmagneticresonanceimagingsignalHCsrelationshipobservedalteredregionsrightgyrusMOGshowedCERITGHippOBJECTIVE:currentaimedapplyfluctuationinvestigatingalterationsrelationshipsPATIENTSANDMETHODS:total351738healthycontrolHCsubjects20enrolledparticipantsunderwentresting-staters-fMRIscanningrespectivelyusedassessclassifiedreceiveroperatingcharacteristicROCcurveCorrelationanalysisperformedcalculateRESULTS:ComparedsignificantlylowermiddleoccipitalcontrasthighercerebelluminferiortemporalhippocampusHowevermanifestationsCONCLUSION:mainlyfoundabnormalintrinsicactivitiesmightprovideusefulinformationexplainingneuralmechanismsAlteredIntrinsicBrainActivitiesPatientsDiabeticRetinopathyUsingAmplitudeLow-frequencyFluctuation:Resting-statefMRIStudyfluctuationsrestingstate

Similar Articles

Cited By