Pioneer Transcription Factors Initiating Gene Network Changes.

Kenneth S Zaret
Author Information
  1. Kenneth S Zaret: Institute for Regenerative Medicine, Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5157, USA; email: zaret@pennmedicine.upenn.edu.

Abstract

Pioneer transcription factors have the intrinsic biochemical ability to scan partial DNA sequence motifs that are exposed on the surface of a nucleosome and thus access silent genes that are inaccessible to other transcription factors. Pioneer factors subsequently enable other transcription factors, nucleosome remodeling complexes, and histone modifiers to engage chromatin, thereby initiating the formation of an activating or repressive regulatory sequence. Thus, pioneer factors endow the competence for fate changes in embryonic development, are essential for cellular reprogramming, and rewire gene networks in cancer cells. Recent studies with reconstituted nucleosomes in vitro and chromatin binding in vivo reveal that pioneer factors can directly perturb nucleosome structure and chromatin accessibility in different ways. This review focuses on our current understanding of the mechanisms by which pioneer factors initiate gene network changes and will ultimately contribute to our ability to control cell fates at will.

Keywords

References

  1. Genes Dev. 1991 Jul;5(7):1285-98 [PMID: 2065977]
  2. Mol Cell. 2004 May 21;14(4):465-77 [PMID: 15149596]
  3. EMBO J. 2014 Feb 18;33(4):312-26 [PMID: 24451200]
  4. Cell Rep. 2019 Sep 3;28(10):2689-2703.e4 [PMID: 31484078]
  5. Mol Cell. 2017 Jul 20;67(2):282-293.e7 [PMID: 28712725]
  6. Mol Cell Biol. 2004 Jul;24(14):6393-402 [PMID: 15226439]
  7. Science. 2015 Jun 19;348(6241):1372-6 [PMID: 26089518]
  8. EMBO Rep. 2004 Nov;5(11):1064-70 [PMID: 15514679]
  9. Cell. 2016 Jul 14;166(2):328-342 [PMID: 27374332]
  10. Genes Dev. 1996 Jul 1;10(13):1670-82 [PMID: 8682297]
  11. Elife. 2017 Jan 16;6: [PMID: 28079019]
  12. PLoS Comput Biol. 2014 Mar 27;10(3):e1003501 [PMID: 24675637]
  13. Biophys J. 2004 Jun;86(6):3473-95 [PMID: 15189848]
  14. Genes Dev. 2009 Dec 15;23(24):2824-38 [PMID: 20008934]
  15. Nature. 2017 Jul 13;547(7662):241-245 [PMID: 28636597]
  16. Cell Stem Cell. 2018 Aug 02;23(2):266-275.e6 [PMID: 29910149]
  17. Genome Res. 2010 Oct;20(10):1361-8 [PMID: 20716666]
  18. Mol Cell. 2018 Jul 19;71(2):294-305.e4 [PMID: 30017582]
  19. Genes Dev. 2003 Aug 15;17(16):2048-59 [PMID: 12923055]
  20. Mol Cell. 2004 Nov 19;16(4):655-61 [PMID: 15546624]
  21. Science. 2017 Jul 28;357(6349): [PMID: 28751582]
  22. Nature. 2020 Apr;580(7805):669-672 [PMID: 32350470]
  23. Development. 2016 Aug 1;143(15):2696-705 [PMID: 27486230]
  24. Cell Stem Cell. 2016 Jan 7;18(1):104-17 [PMID: 26748757]
  25. Cell. 2019 May 2;177(4):852-864.e14 [PMID: 30982597]
  26. Cell Stem Cell. 2018 Nov 1;23(5):727-741.e9 [PMID: 30220521]
  27. Nucleic Acids Res. 2019 Sep 26;47(17):9069-9086 [PMID: 31350899]
  28. Nature. 2019 Nov;575(7782):390-394 [PMID: 31618757]
  29. Nucleic Acids Res. 2016 Apr 20;44(7):3045-58 [PMID: 26657626]
  30. Nat Genet. 2018 Feb;50(2):250-258 [PMID: 29358654]
  31. Nature. 2017 Aug 31;548(7669):607-611 [PMID: 28767641]
  32. Elife. 2019 Oct 01;8: [PMID: 31573510]
  33. Mol Cell. 2002 Feb;9(2):279-89 [PMID: 11864602]
  34. Cell. 2019 Nov 27;179(6):1342-1356.e23 [PMID: 31759698]
  35. Biophys J. 2020 May 5;118(9):2280-2296 [PMID: 32027821]
  36. Sci Rep. 2020 Jul 16;10(1):11832 [PMID: 32678275]
  37. Cell. 2014 Mar 13;156(6):1274-1285 [PMID: 24630727]
  38. Genome Res. 2019 Jan;29(1):107-115 [PMID: 30409772]
  39. Cell Res. 2019 Jun;29(6):486-501 [PMID: 31024170]
  40. Biophys J. 2008 Apr 15;94(8):3323-39 [PMID: 18199661]
  41. Nat Commun. 2018 Apr 30;9(1):1740 [PMID: 29712907]
  42. Mol Cell. 2014 Jun 5;54(5):844-857 [PMID: 24813947]
  43. Cell. 2013 Oct 24;155(3):621-35 [PMID: 24243019]
  44. Epigenetics Chromatin. 2018 Jun 28;11(1):35 [PMID: 29954426]
  45. BMC Dev Biol. 2007 Apr 23;7:37 [PMID: 17451603]
  46. Cell. 2002 Oct 18;111(2):197-208 [PMID: 12408864]
  47. Cell. 2016 Jul 14;166(2):358-368 [PMID: 27293191]
  48. Nat Cell Biol. 2013 Jul;15(7):872-82 [PMID: 23748610]
  49. Genome Res. 2015 Nov;25(11):1757-70 [PMID: 26314830]
  50. Nat Genet. 2011 Jan;43(1):27-33 [PMID: 21151129]
  51. Genes Dev. 2018 Jan 15;32(2):96-111 [PMID: 29440261]
  52. Mol Cell. 1999 Dec;4(6):961-9 [PMID: 10635321]
  53. J Cell Biol. 2018 Apr 2;217(4):1181-1191 [PMID: 29378780]
  54. Genes Dev. 2014 Jan 1;28(1):8-13 [PMID: 24395244]
  55. Proc Natl Acad Sci U S A. 2018 Jan 9;115(2):343-348 [PMID: 29284749]
  56. EMBO J. 2016 Mar 1;35(5):515-35 [PMID: 26796577]
  57. Genes Dev. 2009 Apr 1;23(7):804-9 [PMID: 19339686]
  58. Genes Dev. 2020 Mar 1;34(5-6):398-412 [PMID: 32001511]
  59. Science. 2015 Oct 16;350(6258):325-8 [PMID: 26472909]
  60. Nat Commun. 2020 Jan 21;11(1):402 [PMID: 31964861]
  61. Nucleic Acids Res. 2014 Jan;42(2):836-47 [PMID: 24153113]
  62. Cell. 2016 Mar 24;165(1):75-87 [PMID: 27015308]
  63. Mol Cell. 2016 Apr 7;62(1):79-91 [PMID: 27058788]
  64. Science. 1989 Nov 10;246(4931):810-3 [PMID: 2814502]
  65. Cell. 2002 Oct 18;111(2):185-96 [PMID: 12408863]
  66. Curr Opin Genet Dev. 2011 Apr;21(2):175-86 [PMID: 21342762]
  67. Cell. 2016 Apr 21;165(3):593-605 [PMID: 27062924]
  68. Mol Cell. 2019 Apr 4;74(1):185-195.e4 [PMID: 30797686]
  69. Cell. 2012 Nov 21;151(5):994-1004 [PMID: 23159369]
  70. J Biol Chem. 2018 Sep 7;293(36):13795-13804 [PMID: 29507097]
  71. Nature. 2015 Feb 19;518(7539):317-30 [PMID: 25693563]
  72. Elife. 2014 Jun 12;3: [PMID: 24925319]
  73. Nat Biotechnol. 2014 Feb;32(2):171-178 [PMID: 24441470]
  74. Nature. 2018 Oct;562(7725):76-81 [PMID: 30250250]
  75. Nat Commun. 2019 Jan 30;10(1):487 [PMID: 30700703]
  76. Elife. 2019 Mar 19;8: [PMID: 30888317]
  77. Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10385-90 [PMID: 21606339]
  78. EMBO Rep. 2002 Dec;3(12):1188-94 [PMID: 12446572]
  79. Development. 2000 Nov;127(22):4915-23 [PMID: 11044405]
  80. Mol Cell. 2019 Aug 8;75(3):562-575.e5 [PMID: 31253573]
  81. Science. 2011 Apr 22;332(6028):472-4 [PMID: 21415320]
  82. J Mol Biol. 1996 May 24;258(5):800-12 [PMID: 8637011]
  83. EMBO J. 1998 Jan 2;17(1):244-54 [PMID: 9427758]
  84. Nucleic Acids Res. 2012 Aug;40(15):e119 [PMID: 22844090]
  85. Nat Methods. 2013 Dec;10(12):1213-8 [PMID: 24097267]
  86. Mol Cell. 2007 Oct 26;28(2):291-303 [PMID: 17964267]
  87. Nat Struct Biol. 2002 Apr;9(4):263-7 [PMID: 11887184]
  88. Proc Natl Acad Sci U S A. 2019 Jan 15;116(3):880-889 [PMID: 30598445]
  89. Nucleic Acids Res. 2018 Jan 9;46(1):203-214 [PMID: 29126175]
  90. Nature. 2000 Aug 10;406(6796):593-9 [PMID: 10949293]
  91. Elife. 2018 May 24;7: [PMID: 29792595]
  92. Elife. 2018 Jun 25;7: [PMID: 29939130]
  93. Chromosoma. 2014 Mar;123(1-2):3-13 [PMID: 23996014]
  94. Development. 1991 Sep;113(1):217-25 [PMID: 1764997]
  95. Cell Rep. 2019 Mar 5;26(10):2558-2565.e3 [PMID: 30840881]
  96. Mol Cell Biol. 2005 Apr;25(7):2622-31 [PMID: 15767668]
  97. Nat Genet. 2018 Jul;50(7):1011-1020 [PMID: 29867222]
  98. Genes Dev. 2012 Oct 15;26(20):2299-310 [PMID: 23070814]
  99. Nature. 2019 Jul;571(7765):408-412 [PMID: 31243370]
  100. Cell. 2012 Dec 21;151(7):1608-16 [PMID: 23260146]
  101. Life Sci Alliance. 2019 Mar 29;2(2): [PMID: 30926617]
  102. Nat Struct Mol Biol. 2004 Aug;11(8):763-9 [PMID: 15258568]
  103. Mol Cell. 2020 Feb 6;77(3):488-500.e9 [PMID: 31761495]
  104. Mol Cell. 2019 Sep 19;75(6):1161-1177.e11 [PMID: 31421980]
  105. Nat Rev Mol Cell Biol. 2018 Mar;19(3):192-206 [PMID: 29018282]
  106. Aging Cell. 2018 Jun;17(3):e12742 [PMID: 29484800]
  107. Cell. 2007 Nov 30;131(5):861-72 [PMID: 18035408]
  108. J Biol Chem. 1989 Jan 15;264(2):675-8 [PMID: 2642903]
  109. Development. 1998 Dec;125(24):4909-17 [PMID: 9811575]
  110. Cell. 2017 Jan 26;168(3):442-459.e20 [PMID: 28111071]
  111. Mol Cell. 2009 Sep 24;35(6):889-902 [PMID: 19782036]
  112. Cell Stem Cell. 2015 Apr 2;16(4):386-99 [PMID: 25842977]
  113. Cell. 2017 Aug 24;170(5):875-888.e20 [PMID: 28757253]
  114. Genes Dev. 2019 Jul 1;33(13-14):799-813 [PMID: 31171700]
  115. Development. 2005 Sep;132(17):4005-14 [PMID: 16079152]
  116. Nat Genet. 2018 Feb;50(2):259-269 [PMID: 29358650]
  117. Biochemistry. 2000 Sep 26;39(38):11649-56 [PMID: 10995232]
  118. J Biol Chem. 2003 Dec 5;278(49):48590-601 [PMID: 14512420]
  119. Mol Cell. 2009 Sep 24;35(6):741-53 [PMID: 19782025]
  120. Development. 2016 Jun 1;143(11):1833-7 [PMID: 27246709]
  121. J Mol Biol. 2003 Mar 14;327(1):85-96 [PMID: 12614610]
  122. Genes Dev. 1998 Jan 1;12(1):5-10 [PMID: 9420326]
  123. Cell. 1993 Oct 22;75(2):387-98 [PMID: 8402920]
  124. Nature. 1997 Sep 18;389(6648):251-60 [PMID: 9305837]
  125. Cell. 1994 May 6;77(3):451-9 [PMID: 8181063]
  126. Science. 2020 Jun 26;368(6498):1460-1465 [PMID: 32327602]
  127. J Mol Biol. 1995 Nov 24;254(2):130-49 [PMID: 7490738]
  128. Cell. 2015 Mar 12;160(6):1145-58 [PMID: 25768910]
  129. Mol Cell. 2019 Sep 5;75(5):921-932.e6 [PMID: 31303471]
  130. Mol Cell. 2020 Aug 20;79(4):677-688.e6 [PMID: 32574554]
  131. Immunity. 2018 Feb 20;48(2):243-257.e10 [PMID: 29466756]
  132. Sci Rep. 2015 Jun 03;5:10662 [PMID: 26039515]
  133. Nat Genet. 2020 Apr;52(4):418-427 [PMID: 32203463]
  134. Nat Commun. 2016 May 06;7:11485 [PMID: 27151365]
  135. Elife. 2015 Aug 27;4: [PMID: 26312500]
  136. Cell. 1999 Aug 6;98(3):285-94 [PMID: 10458604]
  137. Nature. 2005 Jun 16;435(7044):944-7 [PMID: 15959514]
  138. Nature. 2019 Jul;571(7765):413-418 [PMID: 31243372]
  139. Nat Rev Cancer. 2012 May 04;12(6):381-5 [PMID: 22555282]
  140. Mol Cell. 2013 Jan 10;49(1):67-79 [PMID: 23177737]
  141. Science. 2019 Mar 15;363(6432): [PMID: 30872491]
  142. Mol Cell. 2014 Sep 4;55(5):708-22 [PMID: 25132174]
  143. Nat Rev Genet. 2014 Feb;15(2):69-81 [PMID: 24342920]
  144. Nat Commun. 2017 Jun 21;8:15896 [PMID: 28635963]
  145. Genome Res. 2015 Nov;25(11):1703-14 [PMID: 26335633]
  146. Cell. 2015 Jan 15;160(1-2):191-203 [PMID: 25557079]
  147. Cell. 2015 Apr 23;161(3):555-568 [PMID: 25892221]
  148. Nature. 2016 Jan 21;529(7586):418-22 [PMID: 26760202]
  149. PLoS Genet. 2011 Sep;7(9):e1002277 [PMID: 21935353]
  150. Mol Cell. 2017 Feb 16;65(4):589-603.e9 [PMID: 28212747]
  151. Science. 2006 Feb 10;311(5762):856-61 [PMID: 16469929]
  152. EMBO J. 1988 Oct;7(10):3073-9 [PMID: 2846275]
  153. J Biol Chem. 2001 Nov 30;276(48):44385-9 [PMID: 11571307]

Grants

  1. R01 GM036477/NIGMS NIH HHS

MeSH Term

Animals
Cellular Reprogramming
Chromatin
Embryonic Development
Gene Regulatory Networks
Histones
Humans
Nucleosomes
Transcription Factors

Chemicals

Chromatin
Histones
Nucleosomes
Transcription Factors

Word Cloud

Created with Highcharts 10.0.0factorsnucleosomechromatinpioneerPioneertranscriptiongeneabilitysequencechangesreprogrammingnetworkswillintrinsicbiochemicalscanpartialDNAmotifsexposedsurfacethusaccesssilentgenesinaccessiblesubsequentlyenableremodelingcomplexeshistonemodifiersengagetherebyinitiatingformationactivatingrepressiveregulatoryThusendowcompetencefateembryonicdevelopmentessentialcellularrewirecancercellsRecentstudiesreconstitutednucleosomesvitrobindingvivorevealcandirectlyperturbstructureaccessibilitydifferentwaysreviewfocusescurrentunderstandingmechanismsinitiatenetworkultimatelycontributecontrolcellfatesTranscriptionFactorsInitiatingGeneNetworkChangesdifferentiationfactor

Similar Articles

Cited By