Combining genetic markers with stable isotopes in otoliths reveals complexity in the stock structure of Atlantic bluefin tuna (Thunnus thynnus).

Deirdre Brophy, Naiara Rodríguez-Ezpeleta, Igaratza Fraile, Haritz Arrizabalaga
Author Information
  1. Deirdre Brophy: Marine and Freshwater Research Centre, Galway Mayo Institute of Technology, Dublin road, Galway, H91 T8NW, Ireland. deirdre.brophy@gmit.ie.
  2. Naiara Rodríguez-Ezpeleta: Marine Research Division, AZTI, Txatxarramendi Ugartea Z/G, 48395, Sukarrieta, Bizkaia, Spain.
  3. Igaratza Fraile: Marine Research Division, AZTI, Txatxarramendi Ugartea Z/G, 48395, Sukarrieta, Bizkaia, Spain.
  4. Haritz Arrizabalaga: Marine Research Division, AZTI, Txatxarramendi Ugartea Z/G, 48395, Sukarrieta, Bizkaia, Spain.

Abstract

Atlantic bluefin tuna (Thunnus thynnus) from the two main spawning populations in the Mediterranean and Gulf of Mexico occur together in the western, central and eastern Atlantic. Stock composition of catches from mixing areas is uncertain, presenting a major challenge to the sustainable management of the fisheries. This study combines genetic and chemical markers to develop an integrated method of population assignment. Stable isotope signatures (δC and δO) in the otolith core of adults from the two main spawning populations (adult baselines) showed less overlap than those of yearlings (12-18 months old) from western and eastern nursery areas suggesting that some exchange occurs towards the end of the yearling phase. The integrated model combined δO with four genetic markers (SNPs) to distinguish the adult baselines with greater accuracy than chemical or genetic markers alone. When used to assign individuals from the mixing areas to their population of origin, the integrated model resolved some (but not all) discrepancies between the chemistry and genetic methods. Some individuals in the mixing area had otolith δO values and genetic profiles which when taken together, were not representative of either population. These fish may originate from another Atlantic spawning area or may represent population contingents that move away from the main spawning areas during the first year of life. This complexity in stock structure is not captured by the current two-stock model.

References

  1. FAO. The State of World Fisheries and Aquaculture 2018-Meeting the sustainable development goals. Rome. Licence: CC BY-NC-SA 3.0 IGO. (2018). https://www.fao.org/documents/card/en/c/I9540EN/ .
  2. Cheung, W. W. L. et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob. Change Biol. 16, 24–35. https://doi.org/10.1111/j.1365-2486.2009.01995.x (2010). [DOI: 10.1111/j.1365-2486.2009.01995.x]
  3. Myers, R. A. & Worm, B. Rapid worldwide depletion of predatory fish communities. Nature 423, 280–283. https://doi.org/10.1038/nature01610 (2003). [DOI: 10.1038/nature01610]
  4. Worm, B. et al. Rebuilding global fisheries. Science 325, 578–585. https://doi.org/10.1126/science.1173146 (2009). [DOI: 10.1126/science.1173146]
  5. van Gemert, R. & Andersen, K. H. Challenges to fisheries advice and management due to stock recovery. ICES J. Mar. Sci. 75, 1864–1870. https://doi.org/10.1093/icesjms/fsy084 (2018). [DOI: 10.1093/icesjms/fsy084]
  6. Cadrin, S. X., Kerr, L. A. & Mariani, S. Stock identification methods: an overview, in Stock Identification Methods: Applications in Fishery Science (eds S.X. Cadrin, L.A. Kerr, & S. Mariani) 535–552 (Academic Press, 2014).
  7. Kerr, L. A. et al. Lessons learned from practical approaches to reconcile mismatches between biological population structure and stock units of marine fish. ICES J. Mar. Sci. 74, 1708–1722. https://doi.org/10.1093/icesjms/fsw188 (2017). [DOI: 10.1093/icesjms/fsw188]
  8. Ovenden, J. R., Berry, O., Welch, D. J., Buckworth, R. C. & Dichmont, C. M. Ocean’s eleven: A critical evaluation of the role of population, evolutionary and molecular genetics in the management of wild fisheries. Fish. Fish. 16, 125–159. https://doi.org/10.1111/faf.12052 (2015). [DOI: 10.1111/faf.12052]
  9. Conover, D. O., Clarke, L. M., Munch, S. B. & Wagner, G. N. Spatial and temporal scales of adaptive divergence in marine fishes and the implications for conservation. J. Fish Biol. 69, 21–47. https://doi.org/10.1111/j.1095-8649.2006.01274.x (2006). [DOI: 10.1111/j.1095-8649.2006.01274.x]
  10. Stockwell, C. A., Hendry, A. P. & Kinnison, M. T. Contemporary evolution meets conservation biology. Trends Ecol. Evol. 18, 94–101. https://doi.org/10.1016/s0169-5347(02)00044-7 (2003). [DOI: 10.1016/s0169-5347(02)00044-7]
  11. Begg, G. A. & Waldman, J. R. An holistic approach to fish stock identification. Fish. Res. 43, 35–44. https://doi.org/10.1016/S0165-7836(99)00065-X (1999). [DOI: 10.1016/S0165-7836(99)00065-X]
  12. Hastings, A. & Botsford, L. W. Persistence of spatial populations depends on returning home. Proc. Natl. Acad. Sci. USA 103, 6067–6072. https://doi.org/10.1073/pnas.0506651103 (2006). [DOI: 10.1073/pnas.0506651103]
  13. Harma, C., Brophy, D., Minto, C. & Clarke, M. The rise and fall of autumn-spawning herring (Clupea harengus L.) in the Celtic Sea between 1959 and 2009: Temporal trends in spawning component diversity. Fish. Res. 121–122, 31–42. https://doi.org/10.1016/j.fishres.2012.01.005 (2012). [DOI: 10.1016/j.fishres.2012.01.005]
  14. Brophy, D. & King, P. A. Larval otolith growth histories show evidence of stock structure in north east Atlantic blue whiting (Micromesistius poutassou). ICES J. Mar. Sci. 64, 1136–1144. https://doi.org/10.1093/icesjms/fsm080 (2007). [DOI: 10.1093/icesjms/fsm080]
  15. Secor, D. H. The unit stock concept: bounded fish and fisheries in Stock Identification Methods 2nd edn (eds CadrinLisa, S.X. & Mariani, A.K.) 7–28 (Academic Press, 2014).
  16. Marengo, M. et al. Combining microsatellite, otolith shape and parasites community analyses as a holistic approach to assess population structure of Dentex dentex. J. Sea Res. 128, 1–14. https://doi.org/10.1016/j.seares.2017.07.003 (2017). [DOI: 10.1016/j.seares.2017.07.003]
  17. Taillebois, L. et al. Strong population structure deduced from genetics, otolith chemistry and parasite abundances explains vulnerability to localized fishery collapse in a large Sciaenid fish, Protonibea diacanthus. Evol. Appl. 10, 978–993. https://doi.org/10.1111/eva.12499 (2017). [DOI: 10.1111/eva.12499]
  18. Welch, D. J. et al. Integrating different approaches in the definition of biological stocks: A northern Australian multi-jurisdictional fisheries example using grey mackerel, Scomberomorus semifasciatus. Mar. Policy 55, 73–80. https://doi.org/10.1016/j.marpol.2015.01.010 (2015). [DOI: 10.1016/j.marpol.2015.01.010]
  19. Reis-Santos, P. et al. Reconciling differences in natural tags to infer demographic and genetic connectivity in marine fish populations. Sci. Rep. 8, 10343. https://doi.org/10.1038/s41598-018-28701-6 (2018). [DOI: 10.1038/s41598-018-28701-6]
  20. Kritzer, J. P. & Liu, O. R. Fishery management strategies for addressing complex spatial structure in marine fish stocks in Stock Identification Methods 2nd edn (eds Cadrin, S.X., Kerr, L.A., & Mariani, S.) 29–57 (Academic Press, 2014).
  21. Abaunza, P. et al. Stock identity of horse mackerel (Trachurus trachurus) in the Northeast Atlantic and Mediterranean Sea: Integrating the results from different stock identification approaches. Fish. Res. 89, 196–209. https://doi.org/10.1016/j.fishres.2007.09.022 (2008). [DOI: 10.1016/j.fishres.2007.09.022]
  22. Sala-Bozano, M., Ketmaier, V. & Mariani, S. Contrasting signals from multiple markers illuminate population connectivity in a marine fish. Mol. Ecol. 18, 4811–4826. https://doi.org/10.1111/j.1365-294X.2009.04404.x (2009). [DOI: 10.1111/j.1365-294X.2009.04404.x]
  23. Fromentin, J. M. & Powers, J. E. Atlantic bluefin tuna: Population dynamics, ecology, fisheries and management. Fish Fish. 6, 281–306. https://doi.org/10.1111/j.1467-2979.2005.00197.x (2005). [DOI: 10.1111/j.1467-2979.2005.00197.x]
  24. Collette, B. B. et al. High value and long life-double jeopardy for tunas and billfishes. Science 333, 291–292. https://doi.org/10.1126/science.1208730 (2011). [DOI: 10.1126/science.1208730]
  25. Collette, B. et al. Thunnus thynnus. The IUCN Red List of Threatened Species 2011: e.T21860A9331546. https://doi.org/10.2305/IUCN.UK.2011-2.RLTS.T21860A9331546.en . (2011) (Downloaded on 25 June 2020).
  26. Fromentin, J.-M., Bonhommeau, S., Arrizabalaga, H. & Kell, L. T. The spectre of uncertainty in management of exploited fish stocks: The illustrative case of Atlantic bluefin tuna. Mar. Policy 47, 8–14. https://doi.org/10.1016/j.marpol.2014.01.018 (2014). [DOI: 10.1016/j.marpol.2014.01.018]
  27. ICCAT. Report of the standing committee on research and statistics (SCRS). Madrid, Spain, 30 September–4 October 2019. https://www.iccat.int/Documents/Meetings/Docs/2019/REPORTS/2019_SCRS_ENG.pdf (2019).
  28. ICCAT. Report of the 2017 ICCAT bluefin stock assessment meeting. Madrid, Spain 20–28 July, 2017. https://www.iccat.int/Documents/SCRS/DetRep/BFT_SA_ENG.pdf (2017).
  29. Rooker, J. R. et al. Crossing the line: Migratory and homing behaviors of Atlantic bluefin tuna. Mar. Ecol. Prog. Ser. 504, 265–276. https://doi.org/10.3354/meps10781 (2014). [DOI: 10.3354/meps10781]
  30. Arregui, I. et al. Movements and geographic distribution of juvenile bluefin tuna in the Northeast Atlantic, described through internal and satellite archival tags. ICES J. Mar. Sci. 75, 1560–1572. https://doi.org/10.1093/icesjms/fsy056 (2018). [DOI: 10.1093/icesjms/fsy056]
  31. Lutcavage, M. E., Brill, R. W., Skomal, G. B., Chase, B. C. & Howey, P. W. Results of pop-up satellite tagging of spawning size class fish in the Gulf of Maine: Do North Atlantic bluefin tuna spawn in the mid-Atlantic?. Can. J. Fish. Aquat. Sci. 56, 173–177. https://doi.org/10.1139/cjfas-56-2-173 (1999). [DOI: 10.1139/cjfas-56-2-173]
  32. Block, B. A. et al. Electronic tagging and population structure of Atlantic bluefin tuna. Nature 434, 1121–1127. https://doi.org/10.1038/nature03463 (2005). [DOI: 10.1038/nature03463]
  33. Boustany, A. M., Reeb, C. A. & Block, B. A. Mitochondrial DNA and electronic tracking reveal population structure of Atlantic bluefin tuna (Thunnus thynnus). Mar. Biol. 156, 13–24. https://doi.org/10.1007/s00227-008-1058-0 (2008). [DOI: 10.1007/s00227-008-1058-0]
  34. Rodríguez-Ezpeleta, N. et al. Determining natal origin for improved management of Atlantic bluefin tuna. Front. Ecol. Environ. 17, 439–444. https://doi.org/10.1002/fee.2090 (2019). [DOI: 10.1002/fee.2090]
  35. Rooker, J. R. et al. Natal homing and connectivity in Atlantic bluefin tuna populations. Science 322, 742–744. https://doi.org/10.1126/science.1161473 (2008). [DOI: 10.1126/science.1161473]
  36. Block, B. A. et al. Migratory movements, depth preferences, and thermal biology of Atlantic bluefin tuna. Science 293, 1310–1314. https://doi.org/10.1126/science.1061197 (2001). [DOI: 10.1126/science.1061197]
  37. Galuardi, B. et al. Complex migration routes of Atlantic bluefin tuna (Thunnus thynnus) question current population structure paradigm. Can. J. Fish. Aquat. Sci. 67, 966–976. https://doi.org/10.1139/f10-033 (2010). [DOI: 10.1139/f10-033]
  38. McGowan, M. F. & Richards, W. J. Bluefin tuna, Thunnus thynnus, larvae in the Gulf Stream off the southeastern United States—satellite and shipboard observations of their environment. Fish. Bull. 87, 615–631. https://spo.nmfs.noaa.gov/sites/default/files/pdf-content/1989/873/mcgowan.pdf (1989).
  39. Richardson, D. E. et al. Discovery of a spawning ground reveals diverse migration strategies in Atlantic bluefin tuna (Thunnus thynnus). Proc. Natl. Acad. Sci. USA 113, 3299–3304. https://doi.org/10.1073/pnas.1525636113 (2016). [DOI: 10.1073/pnas.1525636113]
  40. Muhling, B. A. et al. Collection of larval bluefin tuna (Thunnus thynnus) outside documented western Atlantic spawning grounds. Bull. Mar. Sci. 87, 687–694. https://doi.org/10.5343/bms.2010.1101 (2011). [DOI: 10.5343/bms.2010.1101]
  41. Leach, A. W., Levontin, P., Holt, J., Kell, L. T. & Mumford, J. D. Identification and prioritization of uncertainties for management of Eastern Atlantic bluefin tuna (Thunnus thynnus). Mar. Policy 48, 84–92. https://doi.org/10.1016/j.marpol.2014.03.010 (2014). [DOI: 10.1016/j.marpol.2014.03.010]
  42. Carruthers, T. Evaluating management strategies for Atlantic bluefin tuna, Report 5: Completion and release of the first comprehensive ABFT MSE package for use by stakeholders in MP testing. Short-term contract for modelling approaches: support to BFT assessment (GBYP 06/2017) of the Atlantic-wide research programme on bluefin tuna (ICCAT-GBYP-Phase 7). https://www.iccat.int/GBYP/Docs/Modelling_Phase_7_MSE_Framework.pdf (2018).
  43. Albaina, A. et al. Single nucleotide polymorphism discovery in albacore and Atlantic bluefin tuna provides insights into worldwide population structure. Anim. Genet. 44, 678–692. https://doi.org/10.1111/age.12051 (2013). [DOI: 10.1111/age.12051]
  44. Carlsson, J., McDowell, J. R., Carlsson, J. E. L. & Graves, J. E. Genetic identity of YOY bluefin tuna from the eastern and western Atlantic spawning areas. J. Hered. 98, 23–28. https://doi.org/10.1093/jhered/esl046 (2007). [DOI: 10.1093/jhered/esl046]
  45. Puncher, G. N. et al. Spatial dynamics and mixing of bluefin tuna in the Atlantic Ocean and Mediterranean Sea revealed using next-generation sequencing. Mol. Ecol. Resour. 18, 620–638. https://doi.org/10.1111/1755-0998.12764 (2018). [DOI: 10.1111/1755-0998.12764]
  46. Brophy, D. et al. Otolith shape variation in bluefin tuna (Thunnus thynnus) from different regions of the North Atlantic: A potential marker of stock origin. Mar. Freshw. Res. 67, 1023–1036. https://doi.org/10.1071/MF15086 (2016). [DOI: 10.1071/MF15086]
  47. Dickhut, R. M. et al. Atlantic bluefin tuna (Thunnus thynnus) population dynamics delineated by organochlorine tracers. Environ. Sci. Technol. 43, 8522–8527. https://doi.org/10.1021/es901810e (2009). [DOI: 10.1021/es901810e]
  48. Fraile, I., Arrizabalaga, H. & Rooker, J. R. Origin of Atlantic bluefin tuna (Thunnus thynnus) in the Bay of Biscay. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsu156 (2014). [DOI: 10.1093/icesjms/fsu156]
  49. Rooker, J. R. et al. Wide-ranging temporal variation in transoceanic movement and population mixing of bluefin tuna in the North Atlantic Ocean. Front. Mar. Sci. 6, 398. https://doi.org/10.3389/fmars.2019.00398 (2019). [DOI: 10.3389/fmars.2019.00398]
  50. Corriero, A. et al. Size and age at sexual maturity of female bluefin tuna (Thunnus thynnus L. 1758) from the Mediterranean Sea. J. Appl. Ichthyol. 21, 483–486. https://doi.org/10.1111/j.1439-0426.2005.00700.x (2005). [DOI: 10.1111/j.1439-0426.2005.00700.x]
  51. Heinisch, G., Rosenfeld, H., Knapp, J. M., Gordin, H. & Lutcavage, M. E. Sexual maturity in western Atlantic bluefin tuna. Sci. Rep. 4, 7205–7205. https://doi.org/10.1038/srep07205 (2014). [DOI: 10.1038/srep07205]
  52. Muhling, B. et al. Reproduction and larval biology in tunas, and the importance of restricted area spawning grounds. Rev. Fish Biol. Fish. https://doi.org/10.1007/s11160-017-9471-4 (2017). [DOI: 10.1007/s11160-017-9471-4]
  53. Aranda, G., Abascal, F. J., Varela, J. L. & Medina, A. Spawning behaviour and post-spawning migration patterns of atlantic bluefin tuna (Thunnus thynnus) ascertained from satellite archival tags. PLoS ONE 8, e76445. https://doi.org/10.1371/journal.pone.0076445 (2013). [DOI: 10.1371/journal.pone.0076445]
  54. Rooker, J. R. et al. Evidence of trans-Atlantic movement and natal homing of bluefin tuna from stable isotopes in otoliths. Mar. Ecol. Prog. Ser. 368, 231–239. https://doi.org/10.3354/meps07602 (2008). [DOI: 10.3354/meps07602]
  55. Liaw, A. & Wiener, M. Classification and Regression by randomForest. R News 2, 18–22. https://cogns.northwestern.edu/cbmg/LiawAndWiener2002.pdf (2002).
  56. R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2018).
  57. Mercier, L. et al. Selecting statistical models and variable combinations for optimal classification using otolith microchemistry. Ecol. Appl. 21, 1352–1364. https://doi.org/10.1890/09-1887.1 (2011). [DOI: 10.1890/09-1887.1]
  58. Breiman, L. Random forests. Mach. Learn. 45, 5–32. https://doi.org/10.1023/A:1010933404324 (2001). [DOI: 10.1023/A]
  59. Strobl, C., Malley, J. & Tutz, G. An introduction to recursive partitioning: Rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychol. Methods 14, 323–348. https://doi.org/10.1037/a0016973 (2009). [DOI: 10.1037/a0016973]
  60. Genuer, R., Poggi, J.-M. & Tuleau-Malot, C. VSURF: An R package for variable selection using random forests. R J. https://doi.org/10.32614/RJ-2015-018 (2015). [DOI: 10.32614/RJ-2015-018]
  61. Molnar, C., Bischl, B. & Casalicchio, G. iml: An R package for interpretable machine learning. J. Open Source Softw. 3(26), 786. https://doi.org/10.21105/joss.00786 (2018). [DOI: 10.21105/joss.00786]
  62. Ruckdeschel, R., Kohl, K., Stabla, T. & Camphausen, F. S4 Classes for Distributions. R News 6 (2), 2–6. https://CRAN.R-project.org/doc/Rnews/ (2006).
  63. Trueman, C. N., MacKenzie, K. M. & Palmer, M. R. Identifying migrations in marine fishes through stable-isotope analysis. J. Fish. Biol. 81, 826–847. https://doi.org/10.1111/j.1095-8649.2012.03361.x (2012). [DOI: 10.1111/j.1095-8649.2012.03361.x]
  64. Labelle, M., Hoch, T., Liorzou, B. & Bigot, J.-L. Indices of bluefin tuna (Thunnus thynnus thynnus) abundance derived from sale records of French purse seine catches in the Mediterranean Sea. Aquat. Living Resour. 10, 329–342. https://doi.org/10.1051/alr:1997036 (1997). [DOI: 10.1051/alr]
  65. LeGrande, A. N. & Schmidt, G. A. Global gridded data set of the oxygen isotopic composition in seawater. Geophys. Res. Lett. https://doi.org/10.1029/2006GL026011 (2006). [DOI: 10.1029/2006GL026011]
  66. Ishii, M., Shouji, A., Sugimoto, S. & Matsumoto, T. Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe Collection. Int. J. Climatol. 25, 865–879. https://doi.org/10.1002/joc.1169 (2005). [DOI: 10.1002/joc.1169]
  67. Kitagawa, T. et al. Otolith δO of Pacific bluefin tuna Thunnus orientalis as an indicator of ambient water temperature. Mar. Ecol. Prog. Ser. 481, 199–209. https://doi.org/10.3354/meps10202 (2013). [DOI: 10.3354/meps10202]
  68. Rooker, J. R. et al. Life history and stock structure of Atlantic bluefin tuna (Thunnus thynnus). Rev. Fish. Sci. 15, 265–310. https://doi.org/10.1080/10641260701484135 (2007). [DOI: 10.1080/10641260701484135]
  69. Friedman, J. H. & Popescu, B. E. Predictive learning via rule ensembles. Ann. Appl. Stat. 2, 916–954. https://doi.org/10.1214/07-AOAS148 (2008). [DOI: 10.1214/07-AOAS148]
  70. Gruber, N. et al. Spatiotemporal patterns of carbon-13 in the global surface oceans and the oceanic suess effect. Global Biogeochem. Cycles 13, 307–335. https://doi.org/10.1029/1999GB900019 (1999). [DOI: 10.1029/1999GB900019]
  71. Martino, J. C., Doubleday, Z. A. & Gillanders, B. M. Metabolic effects on carbon isotope biomarkers in fish. Ecol. Indic. 97, 10–16. https://doi.org/10.1016/j.ecolind.2018.10.010 (2019). [DOI: 10.1016/j.ecolind.2018.10.010]
  72. Cort, J. L., Arregui, I., Estruch, V. D. & Deguara, S. Validation of the growth equation applicable to the eastern Atlantic bluefin tuna, Thunnus thynnus (L.), using Lmax, tag-recapture, and first dorsal spine analysis. Rev. Fish. Sci. Aquac. 22, 239–255. https://doi.org/10.1080/23308249.2014.931173 (2014). [DOI: 10.1080/23308249.2014.931173]
  73. Fromentin, J.-M. Descriptive analysis of the ICCAT bluefin tuna tagging database. Collect. Vol. Sci. Pap. ICCAT 54, 353–362 (2002).
  74. Arrizabalaga, H. et al. Life history and migrations of Mediterranean bluefin tuna in The Future of Bluefin Tunas (ed B.A. Block) (John Hopkins University Press, 2019).
  75. Quílez-Badia, G. et al. The WWF/GBYP multi-annual bluefin tuna electronic tagging program (2008–2013): Repercussions for management. Collect. Vol. Sci. Pap. ICCAT 71(4), 1789–1802 (2015).
  76. Di Natale, A., Tensek, S. & García, A. P. Preliminary information about the ICCAT GBYP tagging activities in Phase 5. Collect. Vol. Sci. Pap. ICCAT 72(6), 1589–1613 (2016).
  77. Kerr, L. A., Cadrin, S. X., Secor, D. H. & Taylor, N. G. Modeling the implications of stock mixing and life history uncertainty of Atlantic bluefin tuna. Can. J. Fish. Aquat. Sci. 74, 1990–2004. https://doi.org/10.1139/cjfas-2016-0067 (2016). [DOI: 10.1139/cjfas-2016-0067]
  78. Kerr, L. A. et al. Mixed stock origin of Atlantic bluefin tuna in the US rod and reel fishery (Gulf of Maine) and implications for fisheries management. Fish. Res. 224, 105461. https://doi.org/10.1016/j.fishres.2019.105461 (2020). [DOI: 10.1016/j.fishres.2019.105461]
  79. H. Wickham. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag New York, 2016).

MeSH Term

Animal Distribution
Animals
Atlantic Ocean
Carbon Isotopes
Fisheries
Gulf of Mexico
Mediterranean Sea
Otolithic Membrane
Oxygen Isotopes
Polymorphism, Single Nucleotide
Population Dynamics
Tuna

Chemicals

Carbon Isotopes
Oxygen Isotopes
Oxygen-18
Carbon-13

Word Cloud

Created with Highcharts 10.0.0geneticAtlanticspawningareasmarkerspopulationmainmixingintegratedδOmodelbluefintunaThunnusthynnustwopopulationstogetherwesterneasternchemicalotolithadultbaselinesindividualsareamaycomplexitystockstructureMediterraneanGulfMexicooccurcentralStockcompositioncatchesuncertainpresentingmajorchallengesustainablemanagementfisheriesstudycombinesdevelopmethodassignmentStableisotopesignaturesδCcoreadultsshowedlessoverlapyearlings12-18 monthsoldnurserysuggestingexchangeoccurstowardsendyearlingphasecombinedfourSNPsdistinguishgreateraccuracyaloneusedassignoriginresolveddiscrepancieschemistrymethodsvaluesprofilestakenrepresentativeeitherfishoriginateanotherrepresentcontingentsmoveawayfirstyearlifecapturedcurrenttwo-stockCombiningstableisotopesotolithsreveals

Similar Articles

Cited By