NMDA receptor-mediated CaMKII/ERK activation contributes to renal fibrosis.

Jingyi Zhou, Shuaihui Liu, Luying Guo, Rending Wang, Jianghua Chen, Jia Shen
Author Information
  1. Jingyi Zhou: Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, China.
  2. Shuaihui Liu: Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, China.
  3. Luying Guo: Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, China.
  4. Rending Wang: Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, China.
  5. Jianghua Chen: Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, China. chenjianghua@zju.edu.cn.
  6. Jia Shen: Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, 310003, China. jiashen@zju.edu.cn.

Abstract

BACKGROUND: This study aimed to understand the mechanistic role of N-methyl-D-aspartate receptor (NMDAR) in acute fibrogenesis using models of in vivo ureter obstruction and in vitro TGF-β administration.
METHODS: Acute renal fibrosis (RF) was induced in mice by unilateral ureteral obstruction (UUO). Histological changes were observed using Masson's trichrome staining. The expression levels of NR1, which is the functional subunit of NMDAR, and fibrotic and epithelial-to-mesenchymal transition markers were measured by immunohistochemical and Western blot analysis. HK-2 cells were incubated with TGF-β, and NMDAR antagonist MK-801 and Ca/calmodulin-dependent protein kinase II (CaMKII) antagonist KN-93 were administered for pathway determination. Chronic RF was introduced by sublethal ischemia-reperfusion injury in mice, and NMDAR inhibitor dextromethorphan hydrobromide (DXM) was administered orally.
RESULTS: The expression of NR1 was upregulated in obstructed kidneys, while NR1 knockdown significantly reduced both interstitial volume expansion and the changes in the expression of α-smooth muscle actin, S100A4, fibronectin, COL1A1, Snail, and E-cadherin in acute RF. TGF-β1 treatment increased the elongation phenotype of HK-2 cells and the expression of membrane-located NR1 and phosphorylated CaMKII and extracellular signal-regulated kinase (ERK). MK801 and KN93 reduced CaMKII and ERK phosphorylation levels, while MK801, but not KN93, reduced the membrane NR1 signal. The levels of phosphorylated CaMKII and ERK also increased in kidneys with obstruction but were decreased by NR1 knockdown. The 4-week administration of DXM preserved renal cortex volume in kidneys with moderate ischemic-reperfusion injury.
CONCLUSIONS: NMDAR participates in both acute and chronic renal fibrogenesis potentially via CaMKII-induced ERK activation.

Keywords

References

  1. Neuropharmacology. 2001 Nov;41(6):714-23 [PMID: 11640925]
  2. J Clin Invest. 2014 Jun;124(6):2299-306 [PMID: 24892703]
  3. Hepatol Res. 2012 Aug;42(8):806-18 [PMID: 22414022]
  4. J Cardiovasc Pharmacol. 2010 Jan;55(1):96-105 [PMID: 19935079]
  5. Int J Mol Sci. 2017 Apr 27;18(5): [PMID: 28448446]
  6. In Vivo. 2017 01-02;31(1):1-22 [PMID: 28064215]
  7. Lancet. 2012 Mar 3;379(9818):815-22 [PMID: 22386035]
  8. Am J Physiol Renal Physiol. 2008 Jun;294(6):F1433-40 [PMID: 18272600]
  9. Biochim Biophys Acta. 2013 Dec;1832(12):1998-2008 [PMID: 23851027]
  10. Kidney Int. 2003 Feb;63(2):564-75 [PMID: 12631121]
  11. Kidney Int. 2009 Jun;75(11):1145-1152 [PMID: 19340094]
  12. Nat Rev Neurosci. 2010 Oct;11(10):682-96 [PMID: 20842175]
  13. Med Mol Morphol. 2017 Mar;50(1):1-8 [PMID: 27438710]
  14. Free Radic Res. 2016 Aug;50(8):840-52 [PMID: 27109518]
  15. J Pathol. 2016 Oct;240(2):149-60 [PMID: 27338016]
  16. Nitric Oxide. 2015 Apr 30;46:172-85 [PMID: 25659756]
  17. Cells. 2019 Feb 28;8(3): [PMID: 30823476]
  18. Diabetes. 2016 Oct;65(10):3139-50 [PMID: 27388219]
  19. Invest Ophthalmol Vis Sci. 2000 Apr;41(5):1122-9 [PMID: 10752950]
  20. J Clin Invest. 2019 Jan 2;129(1):24-33 [PMID: 30601139]
  21. J Biol Chem. 2019 Jan 11;294(2):531-546 [PMID: 30446620]
  22. EMBO Mol Med. 2014 Dec 30;7(1):102-23 [PMID: 25550395]
  23. N Engl J Med. 2015 Mar 19;372(12):1138-49 [PMID: 25785971]
  24. Ann Intern Med. 2017 Nov 7;167(9):ITC66-ITC80 [PMID: 29114754]
  25. Kidney Int. 2005 Mar;67(3):931-43 [PMID: 15698432]
  26. Nat Med. 2015 Sep;21(9):989-97 [PMID: 26236989]
  27. Cell Death Dis. 2018 Nov 13;9(11):1126 [PMID: 30425237]
  28. J Am Soc Nephrol. 2011 Jun;22(6):1099-111 [PMID: 21597037]
  29. FASEB J. 2006 May;20(7):976-8 [PMID: 16585060]
  30. Am J Physiol Renal Physiol. 2011 Apr;300(4):F898-905 [PMID: 21209004]
  31. Mol Cell Biochem. 2014 Aug;393(1-2):123-31 [PMID: 24740757]
  32. Kidney Int. 2006 Jan;69(2):213-7 [PMID: 16408108]
  33. Front Mol Neurosci. 2017 Mar 16;10:71 [PMID: 28360837]
  34. Mol Pharmacol. 2012 Oct;82(4):728-37 [PMID: 22828802]
  35. Nat Med. 2016 Feb;22(2):175-82 [PMID: 26726877]
  36. Proc Natl Acad Sci U S A. 2011 Jan 4;108(1):308-13 [PMID: 21173249]
  37. Nat Med. 2015 Sep;21(9):998-1009 [PMID: 26236991]
  38. Nephrol Dial Transplant. 2017 Apr 1;32(suppl_2):ii121-ii128 [PMID: 28201666]
  39. Matrix Biol. 2018 Aug;68-69:248-262 [PMID: 29425694]
  40. Matrix Biol. 2018 Aug;68-69:318-332 [PMID: 29292218]
  41. J Inflamm (Lond). 2019 Nov 14;16:22 [PMID: 31807119]
  42. Annu Rev Physiol. 2018 Feb 10;80:309-326 [PMID: 29068765]
  43. Nat Med. 2015 Apr;21(4):363-72 [PMID: 25774850]
  44. Curr Cancer Drug Targets. 2013 Nov;13(9):963-972 [PMID: 24168186]
  45. J Pathol. 2001 Feb;193(2):256-62 [PMID: 11180174]
  46. Cold Spring Harb Perspect Biol. 2016 May 02;8(5): [PMID: 27141051]
  47. Cell Physiol Biochem. 2017;42(6):2552-2558 [PMID: 28848189]
  48. Kidney Blood Press Res. 2015;40(1):89-99 [PMID: 26029782]
  49. J Cell Mol Med. 2017 Sep;21(9):1781-1790 [PMID: 28230313]
  50. Microbiol Mol Biol Rev. 2004 Jun;68(2):320-44 [PMID: 15187187]
  51. Acta Histochem Cytochem. 2013 Dec 28;46(6):161-70 [PMID: 24610963]
  52. Curr Opin Pharmacol. 2007 Feb;7(1):39-47 [PMID: 17088105]
  53. Nephrol Dial Transplant. 2007 Dec;22(12):3391-407 [PMID: 17890247]

Grants

  1. LQ18H050002/Natural Science Foundation of Zhejiang Province
  2. 81770719/National Natural Science Foundation of China
  3. 81870510/National Natural Science Foundation of China
  4. 81770750/National Natural Science Foundation of China

MeSH Term

Animals
Benzylamines
Calcium-Calmodulin-Dependent Protein Kinase Type 2
Dextromethorphan
Dizocilpine Maleate
Epithelial-Mesenchymal Transition
Excitatory Amino Acid Antagonists
Fibrosis
Gene Knockdown Techniques
Humans
In Vitro Techniques
Kidney
Kidney Tubules, Proximal
Mice
Mitogen-Activated Protein Kinase 1
Mitogen-Activated Protein Kinase 3
Protein Kinase Inhibitors
Receptors, N-Methyl-D-Aspartate
Renal Insufficiency, Chronic
Reperfusion Injury
Sulfonamides
Transforming Growth Factor beta
Ureteral Obstruction

Chemicals

Benzylamines
Excitatory Amino Acid Antagonists
NR1 NMDA receptor
Protein Kinase Inhibitors
Receptors, N-Methyl-D-Aspartate
Sulfonamides
Transforming Growth Factor beta
KN 93
Dizocilpine Maleate
Dextromethorphan
Calcium-Calmodulin-Dependent Protein Kinase Type 2
Mitogen-Activated Protein Kinase 1
Mitogen-Activated Protein Kinase 3

Word Cloud

Created with Highcharts 10.0.0NR1NMDARCaMKIIERKrenalexpressionacuteobstructionfibrosisRFlevelskidneysreducedreceptorfibrogenesisusingTGF-βadministrationmicechangesHK-2cellsantagonistkinaseadministeredinjuryDXMknockdownvolumeincreasedphosphorylatedMK801KN93activationNMDABACKGROUND:studyaimedunderstandmechanisticroleN-methyl-D-aspartatemodelsvivo uretervitroMETHODS:AcuteinducedunilateralureteralUUOHistologicalobservedMasson'strichromestainingfunctionalsubunitfibroticepithelial-to-mesenchymaltransitionmarkersmeasuredimmunohistochemicalWesternblotanalysisincubatedMK-801Ca/calmodulin-dependentproteinIIKN-93pathwaydeterminationChronicintroducedsublethalischemia-reperfusioninhibitordextromethorphanhydrobromideorallyRESULTS:upregulatedobstructedsignificantlyinterstitialexpansionα-smoothmuscleactinS100A4fibronectinCOL1A1SnailE-cadherinTGF-β1treatmentelongationphenotypemembrane-locatedextracellularsignal-regulatedphosphorylationmembranesignalalsodecreased4-weekpreservedcortexmoderateischemic-reperfusionCONCLUSIONS:participateschronicpotentiallyviaCaMKII-inducedreceptor-mediatedCaMKII/ERKcontributesRenal

Similar Articles

Cited By