Developmental, Dietary, and Geographical Impacts on Gut Microbiota of Red Swamp Crayfish ().

Zhenting Zhang, Jiali Liu, Xuexia Jin, Chao Liu, Chenwei Fan, Li Guo, Yunxiang Liang, Jinshui Zheng, Nan Peng
Author Information
  1. Zhenting Zhang: State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
  2. Jiali Liu: State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
  3. Xuexia Jin: State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
  4. Chao Liu: Runge College of Bioengineering, Sichuan Runge Biotechnology Co., Ltd., Mianzhu, Deyang 618200, China.
  5. Chenwei Fan: State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
  6. Li Guo: State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, China.
  7. Yunxiang Liang: State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
  8. Jinshui Zheng: State Key Laboratory of Agricultural Microbiology, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
  9. Nan Peng: State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.

Abstract

Red swamp crayfish () breeding is an important economic mainstay in Hubei province, China. However, information on the gut microbiota of the red swamp crayfish is limited. To address this issue, the effect of developmental stage, diet (fermented or non-fermented feed), and geographical location on the gut microbiota composition in the crayfish was studied via high-throughput 16S rRNA gene sequencing. The results revealed that the dominant phyla in the gut of the crayfish were , , , and . The alpha diversity showed a declining trend during development, and a highly comparable gut microbiota clustering was identified in a development-dependent manner. The results also revealed that development, followed by diet, is a better key driver for crayfish gut microbiota patterns than geographical location. Notably, the relative abundance of was significantly higher in the gut of the crayfish fed with fermented feed than those fed with non-fermented feed, suggesting the fermented feed can be important for the functions (e.g., polysaccharide degradation) of the gut microbiota. In summary, our results revealed the factors shaping gut microbiota of the crayfish and the importance of the fermented feed in crayfish breeding.

Keywords

References

  1. J Adv Res. 2015 May;6(3):269-82 [PMID: 26257925]
  2. Nat Biotechnol. 2017 Jan;35(1):81-89 [PMID: 27893703]
  3. Sci Rep. 2019 Jan 24;9(1):734 [PMID: 30679786]
  4. Fish Shellfish Immunol. 2019 Jan;84:987-997 [PMID: 30403972]
  5. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  6. Nature. 2010 Mar 4;464(7285):59-65 [PMID: 20203603]
  7. FEMS Microbiol Ecol. 2017 Dec 1;93(12): [PMID: 29145612]
  8. Nature. 2019 Nov;575(7781):224-228 [PMID: 31666699]
  9. J Invertebr Pathol. 2020 Apr 21;:107387 [PMID: 32330478]
  10. Fish Shellfish Immunol. 2019 Jun;89:127-131 [PMID: 30930278]
  11. Environ Microbiol. 2017 Aug;19(8):3268-3282 [PMID: 28618142]
  12. Sci Rep. 2015 Dec 11;5:18206 [PMID: 26658351]
  13. Probiotics Antimicrob Proteins. 2018 Sep;10(3):566-576 [PMID: 29274013]
  14. Appl Microbiol Biotechnol. 2018 Apr;102(8):3755-3764 [PMID: 29516148]
  15. Nature. 2012 May 09;486(7402):222-7 [PMID: 22699611]
  16. ISME J. 2011 Oct;5(10):1595-608 [PMID: 21472014]
  17. Bioinformatics. 2010 Oct 1;26(19):2460-1 [PMID: 20709691]
  18. Fish Shellfish Immunol. 2016 Jul;54:602-11 [PMID: 27177431]
  19. BMC Vet Res. 2020 Apr 22;16(1):118 [PMID: 32321508]
  20. Cell. 2014 Nov 6;159(4):789-99 [PMID: 25417156]
  21. Nat Rev Genet. 2012 Mar 13;13(4):260-70 [PMID: 22411464]
  22. Bioinformatics. 2011 Nov 1;27(21):2957-63 [PMID: 21903629]
  23. Appl Environ Microbiol. 2007 Sep;73(17):5566-73 [PMID: 17630315]
  24. BMC Microbiol. 2015 Jul 24;15:140 [PMID: 26205080]
  25. Microbiome. 2015 Jul 01;3:28 [PMID: 26167280]
  26. Nat Microbiol. 2018 Apr;3(4):514-522 [PMID: 29556107]
  27. Appl Microbiol Biotechnol. 2016 Aug;100(16):6947-54 [PMID: 27333908]
  28. Annu Rev Microbiol. 2016 Sep 8;70:235-54 [PMID: 27607553]
  29. Microb Biotechnol. 2019 May;12(3):528-543 [PMID: 30884189]
  30. Nature. 2018 Oct;562(7728):532-537 [PMID: 30305736]
  31. Microb Pathog. 2018 Apr;117:157-161 [PMID: 29471134]
  32. Science. 2012 Jun 8;336(6086):1268-73 [PMID: 22674334]
  33. PLoS One. 2013;8(4):e60802 [PMID: 23577162]
  34. J Fish Dis. 2020 Apr;43(4):413-421 [PMID: 32056230]
  35. ISME J. 2020 Feb;14(2):531-543 [PMID: 31676854]
  36. Anaerobe. 2013 Oct;23:9-11 [PMID: 23933515]
  37. Cell Host Microbe. 2008 Nov 13;4(5):447-57 [PMID: 18996345]
  38. PLoS One. 2015 May 15;10(5):e0127462 [PMID: 25978452]
  39. J Steroid Biochem Mol Biol. 2019 Jan;185:172-183 [PMID: 30157455]
  40. Genome Biol. 2014;15(12):552 [PMID: 25516416]
  41. Environ Microbiol. 2017 Apr;19(4):1490-1501 [PMID: 28205371]
  42. Sci Rep. 2018 Apr 3;8(1):5586 [PMID: 29615795]
  43. PLoS One. 2010 Mar 10;5(3):e9490 [PMID: 20224823]
  44. Mar Biotechnol (NY). 2015 Dec;17(6):811-9 [PMID: 26319409]
  45. J Gastroenterol. 2019 Jan;54(1):53-63 [PMID: 29926167]
  46. ISME J. 2016 Mar;10(3):655-64 [PMID: 26296066]
  47. Fish Shellfish Immunol. 2019 Mar;86:734-755 [PMID: 30553887]
  48. ISME J. 2016 Mar;10(3):644-54 [PMID: 26339860]
  49. Microbiome. 2018 Aug 27;6(1):148 [PMID: 30149801]
  50. Sci Total Environ. 2016 Jan 1;540:386-95 [PMID: 26054972]
  51. AMB Express. 2020 Jan 14;10(1):5 [PMID: 31938890]
  52. Gut. 2015 Jan;64(1):93-100 [PMID: 25016597]
  53. Sci Rep. 2019 Feb 20;9(1):2339 [PMID: 30787388]
  54. Aliment Pharmacol Ther. 2015 Jul;42(2):158-79 [PMID: 26011307]
  55. Front Pharmacol. 2016 Aug 15;7:253 [PMID: 27574508]
  56. Infect Disord Drug Targets. 2017;17(1):59-63 [PMID: 27658860]
  57. Biochem Med (Zagreb). 2011;21(3):203-9 [PMID: 22420233]
  58. Appl Microbiol Biotechnol. 2015 Aug;99(16):6911-9 [PMID: 25947250]

Grants

  1. No. 2662019PY028/Fundamental Research Funds for the Central Universities
  2. grant AMLKF201705/State Key Laboratory of Agricultural Microbiology

Word Cloud

Created with Highcharts 10.0.0crayfishgutmicrobiotafeedfermentedswampresultsrevealedRedbreedingimportantreddietnon-fermentedgeographicallocationhigh-throughputsequencingdevelopmentfedfactorsshapingeconomicmainstayHubeiprovinceChinaHoweverinformationlimitedaddressissueeffectdevelopmentalstagecompositionstudiedvia16SrRNAgenedominantphylaalphadiversityshoweddecliningtrendhighlycomparableclusteringidentifieddevelopment-dependentmanneralsofollowedbetterkeydriverpatternsNotablyrelativeabundancesignificantlyhighersuggestingcanfunctionsegpolysaccharidedegradationsummaryimportanceDevelopmentalDietaryGeographicalImpactsGutMicrobiotaSwampCrayfishProcambarusclarkii

Similar Articles

Cited By