Pituitary Actions of EGF on Gonadotropins, Growth Hormone, Prolactin and Somatolactins in Grass Carp.

Qiongyao Hu, Qinbo Qin, Shaohua Xu, Lingling Zhou, Chuanhui Xia, Xuetao Shi, Huiying Zhang, Jingyi Jia, Cheng Ye, Zhan Yin, Guangfu Hu
Author Information
  1. Qiongyao Hu: College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
  2. Qinbo Qin: State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China.
  3. Shaohua Xu: College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
  4. Lingling Zhou: College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
  5. Chuanhui Xia: College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
  6. Xuetao Shi: College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
  7. Huiying Zhang: College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
  8. Jingyi Jia: College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
  9. Cheng Ye: College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
  10. Zhan Yin: State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
  11. Guangfu Hu: College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China. ORCID

Abstract

In mammals, epidermal growth factor (EGF) plays a vital role in both pituitary physiology and pathology. However, the functional role of EGF in the regulation of pituitary hormones has rarely reported in teleost. In our study, using primary cultured grass carp pituitary cells as an in vitro model, we examined the effects of EGF on pituitary hormone secretion and gene expression as well as the post-receptor signaling mechanisms involved. Firstly, we found that EGF significantly reduced luteinizing hormone (LHβ) mRNA expression via ErbB1 coupled to ERK1/2 pathway, but had no effect on LH release in grass carp pituitary cells. Secondly, the results showed that EGF was effective in up-regulating mRNA expression of growth hormone (GH), somatolactin α (SLα) and somatolactin β (SLβ) via ErbB1 and ErbB2 and subsequently coupled to MEK1/2/ERK1/2 and PI3K/Akt/mTOR pathways, respectively. However, EGF was not effective in GH release in pituitary cells. Thirdly, we found that EGF strongly induced pituitary prolactin (PRL) release and mRNA expression, which was mediated by ErbB1 and subsequent stimulation of MEK1/2/ERK1/2 and PI3K/Akt/mTOR pathways. Interestingly, subsequent study further found that neurokinin B (NKB) significantly suppressed EGF-induced PRL mRNA expression, which was mediated by neurokinin receptor (NK2R) and coupled to AC/cAMP/PKA signal pathway. These results suggested that EGF could differently regulate the pituitary hormones expression in grass carp pituitary cells.

Keywords

References

  1. Front Endocrinol (Lausanne). 2018 Nov 20;9:683 [PMID: 30515132]
  2. FEBS J. 2010 Jan;277(2):301-8 [PMID: 19922469]
  3. Gen Comp Endocrinol. 2006 Jan 15;145(2):182-7 [PMID: 16259984]
  4. J Cell Physiol. 2009 Mar;218(3):460-6 [PMID: 19006176]
  5. Gene. 2009 Aug 1;442(1-2):81-7 [PMID: 19393303]
  6. Periodontol 2000. 2015 Feb;67(1):234-50 [PMID: 25494603]
  7. Trends Endocrinol Metab. 2005 Sep;16(7):320-6 [PMID: 16054836]
  8. Endocrinology. 2019 Mar 1;160(3):568-586 [PMID: 30668682]
  9. Gen Comp Endocrinol. 1998 Apr;110(1):29-45 [PMID: 9514844]
  10. J Pediatr Endocrinol Metab. 2004 Sep;17 Suppl 4:1321-6 [PMID: 15506078]
  11. J Mol Endocrinol. 2004 Aug;33(1):281-91 [PMID: 15291759]
  12. Mol Cell Endocrinol. 1988 May;57(1-2):157-62 [PMID: 3260875]
  13. Neuroendocrinology. 1993 Jan;57(1):23-7 [PMID: 8479613]
  14. J Endocrinol. 2001 Jan;168(1):1-23 [PMID: 11139766]
  15. Lancet. 2016 Nov 12;388(10058):2403-2415 [PMID: 27041067]
  16. Endocrinology. 2005 Jan;146(1):77-84 [PMID: 15459120]
  17. Endocr Relat Cancer. 2011 Oct 27;18(6):R197-211 [PMID: 21917845]
  18. Science. 1963 May 31;140(3570):987-8 [PMID: 13975313]
  19. Endocrinology. 2009 Feb;150(2):795-802 [PMID: 18832099]
  20. Nat Rev Mol Cell Biol. 2006 Jul;7(7):505-16 [PMID: 16829981]
  21. Gene. 2006 Jan 17;366(1):2-16 [PMID: 16377102]
  22. Biol Reprod. 2004 Jul;71(1):17-27 [PMID: 15028633]
  23. Endocr Rev. 1990 Feb;11(1):177-99 [PMID: 2108012]
  24. Gen Comp Endocrinol. 2007 Feb;150(3):395-404 [PMID: 17141235]
  25. Nature. 1982 Nov 11;300(5888):192-4 [PMID: 6982423]
  26. Endocrinology. 1984 Aug;115(2):556-8 [PMID: 6611253]
  27. Science. 2004 Jan 30;303(5658):682-4 [PMID: 14726596]
  28. J Endocrinol. 2004 Sep;182(3):509-18 [PMID: 15350192]
  29. Endocrinology. 2014 Sep;155(9):3582-96 [PMID: 24971612]
  30. Am J Physiol Endocrinol Metab. 2008 Aug;295(2):E477-90 [PMID: 18523121]
  31. Gen Comp Endocrinol. 2009 Jan 15;160(2):183-93 [PMID: 19063890]
  32. J Exp Zool A Ecol Genet Physiol. 2012 Aug;317(7):410-24 [PMID: 22628286]
  33. J Mammary Gland Biol Neoplasia. 2008 Mar;13(1):3-11 [PMID: 18204889]
  34. Gen Comp Endocrinol. 2013 Jan 15;181:288-94 [PMID: 23036736]
  35. J Mammary Gland Biol Neoplasia. 2008 Mar;13(1):119-29 [PMID: 18236142]
  36. Int J Mol Sci. 2019 Oct 18;20(20): [PMID: 31635309]
  37. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4330-4 [PMID: 2349240]
  38. Comp Biochem Physiol A Mol Integr Physiol. 2013 Jan;164(1):10-6 [PMID: 23047050]
  39. Mol Endocrinol. 2015 Jan;29(1):76-98 [PMID: 25396299]
  40. Reprod Biol Endocrinol. 2008 Sep 15;6:42 [PMID: 18793397]
  41. Sci Rep. 2016 Jan 04;6:18597 [PMID: 26726070]
  42. Int J Mol Sci. 2018 Dec 26;20(1): [PMID: 30587833]
  43. Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10269-74 [PMID: 22689988]
  44. J Cell Physiol. 1984 Aug;120(2):249-56 [PMID: 6086677]

Grants

  1. 2019KF004/State Key Laboratory of Developmental Biology of Freshwater Fish
  2. 2020FB01/State Key Laboratory of Freshwater Ecology and Biotechnology

Word Cloud

Created with Highcharts 10.0.0EGFpituitaryexpressioncellshormonemRNAErbB1growthgrasscarpfoundcoupledreleaseroleHoweverhormonesstudysignificantlyLHβviapathwayresultseffectiveGHsomatolactinMEK1/2/ERK1/2PI3K/Akt/mTORpathwaysprolactinPRLmediatedsubsequentneurokininNKBmammalsepidermalfactorplaysvitalphysiologypathologyfunctionalregulationrarelyreportedteleostusingprimaryculturedvitromodelexaminedeffectssecretiongenewellpost-receptorsignalingmechanismsinvolvedFirstlyreducedluteinizingERK1/2effectLHSecondlyshowedup-regulatingαSLαβSLβErbB2subsequentlyrespectivelyThirdlystronglyinducedstimulationInterestinglyBsuppressedEGF-inducedreceptorNK2RAC/cAMP/PKAsignalsuggesteddifferentlyregulatePituitaryActionsGonadotropinsGrowthHormoneProlactinSomatolactinsGrassCarp

Similar Articles

Cited By