Characterization of Differentially Expressed miRNAs and Their Predicted Target Transcripts during Smoltification and Adaptation to Seawater in Head Kidney of Atlantic Salmon.

Alice Shwe, Tone-Kari Knutsdatter Østbye, Aleksei Krasnov, Sigmund Ramberg, Rune Andreassen
Author Information
  1. Alice Shwe: Department of Life Science and Health, Faculty of Health Sciences, OsloMet‒Oslo Metropolitan University, N-0130 Oslo, Norway.
  2. Tone-Kari Knutsdatter Østbye: Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), Postboks 210, NO-1431 Ås, Norway. ORCID
  3. Aleksei Krasnov: Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), Postboks 210, NO-1431 Ås, Norway.
  4. Sigmund Ramberg: Department of Life Science and Health, Faculty of Health Sciences, OsloMet‒Oslo Metropolitan University, N-0130 Oslo, Norway.
  5. Rune Andreassen: Department of Life Science and Health, Faculty of Health Sciences, OsloMet‒Oslo Metropolitan University, N-0130 Oslo, Norway. ORCID

Abstract

Smoltification and early seawater phase are critical developmental periods with physiological and biochemical changes in Atlantic salmon that facilitates survival in saltwater. MicroRNAs (miRNAs) are known to have important roles in development, but whether any miRNAs are involved in regulation of gene expression during smoltification and the adaption to seawater is largely unknown. Here, small RNA sequencing of materials from head kidney before, during smoltification and post seawater transfer were used to study expression dynamics of miRNAs, while microarray analysis was applied to study mRNA expression dynamics. Comparing all timepoints, 71 miRNAs and 2709 mRNAs were identified as differentially expressed (DE). Hierarchical clustering analysis of the DE miRNAs showed three major clusters with characteristic expression changes. Eighty-one DE mRNAs revealed negatively correlated expression patterns to DE miRNAs in Cluster I and III. Furthermore, 42 of these mRNAs were predicted as DE miRNA targets. Gene enrichment analysis of negatively correlated target genes showed they were enriched in gene ontology groups hormone biosynthesis, stress management, immune response, and ion transport. The results strongly indicate that post-transcriptional regulation of gene expression by miRNAs is important in smoltification and sea water adaption, and this study identifies several putative miRNA-target pairs for further functional studies.

Keywords

References

  1. RNA. 2004 Oct;10(10):1507-17 [PMID: 15383676]
  2. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  3. BMC Genomics. 2013 Jul 17;14:482 [PMID: 23865519]
  4. Dev Comp Immunol. 2017 Nov;76:380-391 [PMID: 28711463]
  5. Fish Physiol Biochem. 1994 Jul;13(3):191-7 [PMID: 24198189]
  6. Gen Comp Endocrinol. 1987 Jan;65(1):19-22 [PMID: 3803898]
  7. Gastroenterology. 2012 Jul;143(1):177-87.e8 [PMID: 22504094]
  8. Curr Mol Med. 2011 Mar;11(2):93-109 [PMID: 21342132]
  9. Front Immunol. 2020 Sep 11;11:2113 [PMID: 33013890]
  10. Sci Rep. 2017 Dec 22;7(1):18089 [PMID: 29273769]
  11. Cells. 2019 Dec 07;8(12): [PMID: 31817907]
  12. Mar Biotechnol (NY). 2010 Apr;12(2):126-40 [PMID: 19585168]
  13. Am J Physiol Regul Integr Comp Physiol. 2008 May;294(5):R1563-74 [PMID: 18321951]
  14. Mol Cell Endocrinol. 2004 Feb 27;215(1-2):149-59 [PMID: 15026188]
  15. Dis Aquat Organ. 2013 Dec 12;107(2):141-50 [PMID: 24334356]
  16. PLoS One. 2013 Nov 14;8(11):e80844 [PMID: 24244721]
  17. Semin Cell Dev Biol. 2017 May;65:29-37 [PMID: 27000418]
  18. Biochim Biophys Acta. 2016 Jan;1859(1):71-81 [PMID: 26303205]
  19. Dis Aquat Organ. 2015 Jun 3;114(3):177-87 [PMID: 26036825]
  20. Funct Integr Genomics. 2019 Sep;19(5):775-786 [PMID: 31076931]
  21. Fish Physiol Biochem. 2013 Oct;39(5):1079-88 [PMID: 23277099]
  22. J Comp Physiol B. 2015 Feb;185(2):207-23 [PMID: 25491777]
  23. Cell Cycle. 2018;17(2):250-262 [PMID: 29251244]
  24. J Fish Dis. 2010 May;33(5):391-402 [PMID: 20158578]
  25. Arch Med Res. 2001 Nov-Dec;32(6):576-86 [PMID: 11750733]
  26. Fish Physiol Biochem. 1993 Jul;12(1):1-9 [PMID: 24202620]
  27. Acta Physiol (Oxf). 2017 Feb;219(2):346-361 [PMID: 27009502]
  28. Dev Comp Immunol. 2017 Oct;75:77-85 [PMID: 28254620]
  29. J Therm Biol. 2019 Jul;83:134-141 [PMID: 31331511]
  30. Cell. 2018 Mar 22;173(1):20-51 [PMID: 29570994]
  31. Fish Shellfish Immunol. 2016 Nov;58:33-41 [PMID: 27637733]
  32. Gen Comp Endocrinol. 1986 Feb;61(2):203-13 [PMID: 3007267]
  33. Dev Comp Immunol. 2017 Jan;66:73-83 [PMID: 27387152]
  34. J Fish Biol. 2014 Oct;85(4):1227-52 [PMID: 25263190]
  35. Fish Shellfish Immunol. 2007 Dec;23(6):1127-51 [PMID: 17980622]
  36. Zebrafish. 2015 Dec;12(6):387-97 [PMID: 26418264]
  37. Microb Pathog. 2018 Oct;123:353-360 [PMID: 30041004]
  38. Nat Protoc. 2019 Mar;14(3):703-721 [PMID: 30804569]
  39. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  40. Cell Metab. 2018 Feb 6;27(2):281-298 [PMID: 29129785]
  41. Cells. 2019 Jan 11;8(1): [PMID: 30641951]
  42. Annu Rev Cell Dev Biol. 2007;23:175-205 [PMID: 17506695]
  43. Comp Biochem Physiol Part D Genomics Proteomics. 2011 Mar;6(1):31-8 [PMID: 20605756]
  44. Gen Comp Endocrinol. 2011 Jan 15;170(2):290-8 [PMID: 20627104]
  45. BMC Genomics. 2017 May 4;18(1):349 [PMID: 28472924]
  46. Int J Mol Sci. 2020 Jun 02;21(11): [PMID: 32498303]
  47. Clin Sci (Lond). 2016 Jul 1;130(14):1197-207 [PMID: 27129188]
  48. Biol Bull. 2015 Aug;229(1):70-92 [PMID: 26338871]
  49. Gen Comp Endocrinol. 1992 Feb;85(2):278-85 [PMID: 1601259]
  50. Physiol Behav. 2009 Feb 16;96(2):233-43 [PMID: 18955074]
  51. J Fish Dis. 2020 Apr;43(4):445-457 [PMID: 32057123]
  52. Life Sci. 2017 Feb 15;171:21-29 [PMID: 28077310]

MeSH Term

Adaptation, Physiological
Animals
Fish Proteins
Gene Expression Regulation
Gills
Head Kidney
MicroRNAs
RNA, Messenger
Salinity
Salmo salar
Seawater
Sequence Analysis, RNA
Transcriptome

Chemicals

Fish Proteins
MicroRNAs
RNA, Messenger

Word Cloud

Created with Highcharts 10.0.0miRNAsexpressionseawaterDEsmoltificationAtlanticgenestudyanalysismRNAsSmoltificationchangessalmonimportantregulationadaptionsequencingheadkidneytransferdynamicsmicroarrayshowednegativelycorrelatedmiRNAearlyphasecriticaldevelopmentalperiodsphysiologicalbiochemicalfacilitatessurvivalsaltwaterMicroRNAsknownrolesdevelopmentwhetherinvolvedlargelyunknownsmallRNAmaterialspostusedappliedmRNAComparingtimepoints712709identifieddifferentiallyexpressedHierarchicalclusteringthreemajorclusterscharacteristicEighty-onerevealedpatternsClusterIIIFurthermore42predictedtargetsGeneenrichmenttargetgenesenrichedontologygroupshormonebiosynthesisstressmanagementimmuneresponseiontransportresultsstronglyindicatepost-transcriptionalseawateridentifiesseveralputativemiRNA-targetpairsfunctionalstudiesCharacterizationDifferentiallyExpressedPredictedTargetTranscriptsAdaptationSeawaterHeadKidneySalmonparr-smolttransformationadaptation

Similar Articles

Cited By