Jinglei Yang: School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, Zhejiang, China.
Li Yang: School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, Zhejiang, China.
Rongfang Chen: School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, Zhejiang, China.
Yun Zhu: School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, Zhejiang, China.
Siyao Wang: School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, Zhejiang, China.
Xueqin Hou: School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, Zhejiang, China.
Bei Wei: School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, Zhejiang, China.
Qiongsi Wang: School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, Zhejiang, China.
Yue Liu: School of Optometry, Center for Eye Disease and Development, University of California-Berkeley, Berkeley, CA, 94720, USA.
Jia Qu: School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, Zhejiang, China. jia.qu@eye.ac.cn.
Xiangtian Zhou: School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, Zhejiang, China. jqu@wz.zj.cn.
Spectral composition affects emmetropization in both humans and animal models. Because color vision interacts the effects of chromatic defocus, we developed a method to bypass the effects of longitudinal chromatic aberration by placing a spectral filter behind the optics of the eye, using genetic tools. Newborn C57BL/6J (B6) mice were reared in quasi-monochromatic red (410-510 nm) or blue (585-660 nm) light beginning before eye-opening. Refractive states and ocular dimensions were compared at 4, 6, 8, and 10 weeks with mice reared in normal white light. Cre recombinase-dependent Ai9 reporter mice were crossed with Chx10-Cre to obtain Chx10-Cre;Ai9 mice, expressing red fluorescent protein in retinal Cre-positive cells. Ai9 offsprings, with and without Cre, were reared under a normal visual environment. Refraction and axial components were measured as described above. Expression levels of M and S opsin were quantified by western blotting at 10 weeks. Compared with those reared in white light, B6 mice reared in red light developed relative hyperopia, principally characterized by flattening of corneal curvature. Emmetropization was not affected by blue light, possibly because the reduction in vitreous chamber depth compensated for the increase in corneal curvature. Compared with Cre-negative littermates, the refraction and axial dimensions of Chx10-Cre;Ai9 mice were not significantly different at the follow-up timepoints. M opsin levels were higher in Chx10-Cre;Ai9 mice at 10 weeks while S opsin levels were not different. Red light induced a hyperopic shift in mouse refractive development. Emmetropization was not impacted in mice with perturbed color vision caused by intrinsic red-fluorescent protein, suggesting that color vision may not be necessary in mouse emmetropization when other mechanisms are present.
References
Dolgin, E. The myopia boom. Nature 519, 276–278. https://doi.org/10.1038/519276a (2015).
[DOI: 10.1038/519276a]
Holden, B. A. et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 123, 1036–1042. https://doi.org/10.1016/j.ophtha.2016.01.006 (2016).
[DOI: 10.1016/j.ophtha.2016.01.006]
Morgan, I. G. et al. The epidemics of myopia: aetiology and prevention. Prog. Retin. Eye Res. 62, 134–149. https://doi.org/10.1016/j.preteyeres.2017.09.004 (2018).
[DOI: 10.1016/j.preteyeres.2017.09.004]
Wallman, J. & Winawer, J. Homeostasis of eye growth and the question of myopia. Neuron 43, 447–468. https://doi.org/10.1016/j.neuron.2004.08.008 (2004).
[DOI: 10.1016/j.neuron.2004.08.008]
Cook, R. C. & Glasscock, R. E. Refractive and ocular findings in the newborn. Am. J. Ophthalmol. 34, 1407–1413 (1951).
[DOI: 10.1016/0002-9394(51)90481-3]
Chen, J. et al. Cycloplegic and noncycloplegic refractions of Chinese neonatal infants. Investig. Ophthalmol. Vis. Sci. 52, 2456–2461. https://doi.org/10.1167/iovs.10-5441 (2011).
[DOI: 10.1167/iovs.10-5441]
Pickett-Seltner, R. L., Sivak, J. G. & Pasternak, J. J. Experimentally induced myopia in chicks: morphometric and biochemical analysis during the first 14 days after hatching. Vis. Res. 28, 323–328 (1988).
[DOI: 10.1016/0042-6989(88)90160-5]
Norton, T. T. & McBrien, N. A. Normal development of refractive state and ocular component dimensions in the tree shrew (Tupaia belangeri). Vis. Res. 32, 833–842 (1992).
[DOI: 10.1016/0042-6989(92)90026-F]
Graham, B. & Judge, S. J. Normal development of refractive state and ocular component dimensions in the marmoset (Callithrix jacchus). Vis. Res. 39, 177–187 (1999).
[DOI: 10.1016/S0042-6989(98)00188-6]
Li, W. et al. The effect of spectral property and intensity of light on natural refractive development and compensation to negative lenses in guinea pigs. Investig. Ophthalmol. Vis. Sci. 55, 6324–6332. https://doi.org/10.1167/iovs.13-13802 (2014).
[DOI: 10.1167/iovs.13-13802]
Cohen, Y., Peleg, E., Belkin, M., Polat, U. & Solomon, A. S. Ambient illuminance, retinal dopamine release and refractive development in chicks. Exp. Eye Res. 103, 33–40. https://doi.org/10.1016/j.exer.2012.08.004 (2012).
[DOI: 10.1016/j.exer.2012.08.004]
Cohen, Y., Belkin, M., Yehezkel, O., Solomon, A. S. & Polat, U. Dependency between light intensity and refractive development under light-dark cycles. Exp. Eye Res. 92, 40–46. https://doi.org/10.1016/j.exer.2010.10.012 (2011).
[DOI: 10.1016/j.exer.2010.10.012]
Ashby, R. S. & Schaeffel, F. The effect of bright light on lens compensation in chicks. Investig. Ophthalmol. Vis. Sci. 51, 5247–5253. https://doi.org/10.1167/iovs.09-4689 (2010).
[DOI: 10.1167/iovs.09-4689]
Ashby, R., Ohlendorf, A. & Schaeffel, F. The effect of ambient illuminance on the development of deprivation myopia in chicks. Investig. Ophthalmol. Vis. Sci. 50, 5348–5354. https://doi.org/10.1167/iovs.09-3419 (2009).
[DOI: 10.1167/iovs.09-3419]
Smith, E. L. 3rd., Hung, L. F. & Huang, J. Protective effects of high ambient lighting on the development of form-deprivation myopia in rhesus monkeys. Investig. Ophthalmol. Vis. Sci. 53, 421–428. https://doi.org/10.1167/iovs.11-8652 (2012).
[DOI: 10.1167/iovs.11-8652]
Chen, S. et al. Bright light suppresses form-deprivation myopia development with activation of dopamine D1 receptor signaling in the ON pathway in retina. Investig. Ophthalmol. Vis. Sci. 58, 2306–2316. https://doi.org/10.1167/iovs.16-20402 (2017).
[DOI: 10.1167/iovs.16-20402]
Landis, E. G., Yang, V., Brown, D. M., Pardue, M. T. & Read, S. A. Dim light exposure and myopia in children. Investig. Ophthalmol. Vis. Sci. 59, 4804–4811. https://doi.org/10.1167/iovs.18-24415 (2018).
[DOI: 10.1167/iovs.18-24415]
Seidemann, A. & Schaeffel, F. Effects of longitudinal chromatic aberration on accommodation and emmetropization. Vis. Res. 42, 2409–2417 (2002).
[DOI: 10.1016/S0042-6989(02)00262-6]
Foulds, W. S., Barathi, V. A. & Luu, C. D. Progressive myopia or hyperopia can be induced in chicks and reversed by manipulation of the chromaticity of ambient light. Investig. Ophthalmol. Vis. Sci. 54, 8004–8012. https://doi.org/10.1167/iovs.13-12476 (2013).
[DOI: 10.1167/iovs.13-12476]
Jiang, L. et al. Interactions of chromatic and lens-induced defocus during visual control of eye growth in guinea pigs (Cavia porcellus). Vis. Res. 94, 24–32. https://doi.org/10.1016/j.visres.2013.10.020 (2014).
[DOI: 10.1016/j.visres.2013.10.020]
Liu, R. et al. Effects of different monochromatic lights on refractive development and eye growth in guinea pigs. Exp. Eye Res. 92, 447–453. https://doi.org/10.1016/j.exer.2011.03.003 (2011).
[DOI: 10.1016/j.exer.2011.03.003]
Turnbull, P. R., Backhouse, S. & Phillips, J. R. Visually guided eye growth in the squid. Curr. Biol. CB 25, R791-792. https://doi.org/10.1016/j.cub.2015.07.073 (2015).
[DOI: 10.1016/j.cub.2015.07.073]
Gawne, T. J., Siegwart, J. T. Jr., Ward, A. H. & Norton, T. T. The wavelength composition and temporal modulation of ambient lighting strongly affect refractive development in young tree shrews. Exp. Eye Res. 155, 75–84. https://doi.org/10.1016/j.exer.2016.12.004 (2017).
[DOI: 10.1016/j.exer.2016.12.004]
Liu, R. et al. The effects of monochromatic illumination on early eye development in rhesus monkeys. Invest Ophthalmol Vis Sci 55, 1901–1909. https://doi.org/10.1167/iovs.13-12276 (2014).
[DOI: 10.1167/iovs.13-12276]
Rucker, F. J. & Wallman, J. Cone signals for spectacle-lens compensation: differential responses to short and long wavelengths. Vis. Res. 48, 1980–1991. https://doi.org/10.1016/j.visres.2008.06.003 (2008).
[DOI: 10.1016/j.visres.2008.06.003]
Rucker, F. J. & Wallman, J. Chick eyes compensate for chromatic simulations of hyperopic and myopic defocus: evidence that the eye uses longitudinal chromatic aberration to guide eye-growth. Vis. Res. 49, 1775–1783. https://doi.org/10.1016/j.visres.2009.04.014 (2009).
[DOI: 10.1016/j.visres.2009.04.014]
Rucker, F. J. & Wallman, J. Chicks use changes in luminance and chromatic contrast as indicators of the sign of defocus. J. Vis. 12, 1–13. https://doi.org/10.1167/12.6.23 (2012).
[DOI: 10.1167/12.6.23]
Long, Q., Chen, D. & Chu, R. Illumination with monochromatic long-wavelength light promotes myopic shift and ocular elongation in newborn pigmented guinea pigs. Cutan. Ocul. Toxicol. 28, 176–180. https://doi.org/10.3109/15569520903178364 (2009).
[DOI: 10.3109/15569520903178364]
Zou, L. et al. Effect of altered retinal cones/opsins on refractive development under monochromatic lights in guinea pigs. J. Ophthalmol. 2018, 9197631. https://doi.org/10.1155/2018/9197631 (2018).
[DOI: 10.1155/2018/9197631]
Smith, E. L. 3rd. et al. Effects of long-wavelength lighting on refractive development in infant rhesus monkeys. Investig. Ophthalmol. Vis. Sci. 56, 6490–6500. https://doi.org/10.1167/iovs.15-17025 (2015).
[DOI: 10.1167/iovs.15-17025]
Rucker, F. Monochromatic and white light and the regulation of eye growth. Exp. Eye Res. 184, 172–182. https://doi.org/10.1016/j.exer.2019.04.020 (2019).
[DOI: 10.1016/j.exer.2019.04.020]
Baker, M. Neuroscience: through the eyes of a mouse. Nature 502, 156–158. https://doi.org/10.1038/502156a (2013).
[DOI: 10.1038/502156a]
Peirson, S. N., Brown, L. A., Pothecary, C. A., Benson, L. A. & Fisk, A. S. Light and the laboratory mouse. J. Neurosci. Methods 300, 26–36. https://doi.org/10.1016/j.jneumeth.2017.04.007 (2018).
[DOI: 10.1016/j.jneumeth.2017.04.007]
de la Cera, E. G., Rodríguez, G., Llorente, L., Schaeffel, F. & Marcos, S. Optical aberrations in the mouse eye. Vis. Res. 46, 2546–2553. https://doi.org/10.1016/j.visres.2006.01.011 (2006).
[DOI: 10.1016/j.visres.2006.01.011]
Zhou, X. et al. The development of the refractive status and ocular growth in C57BL/6 mice. Investig. Ophthalmol. Vis. Sci. 49, 5208–5214. https://doi.org/10.1167/iovs.07-1545 (2008).
[DOI: 10.1167/iovs.07-1545]
Zhou, X., Pardue, M. T., Iuvone, P. M. & Qu, J. Dopamine signaling and myopia development: what are the key challenges. Prog. Retin. Eye Res. 61, 60–71. https://doi.org/10.1016/j.preteyeres.2017.06.003 (2017).
[DOI: 10.1016/j.preteyeres.2017.06.003]
Jiang, X. et al. Inducement and evaluation of a murine model of experimental myopia. J. Vis. Exp. JoVE https://doi.org/10.3791/58822 (2019).
[DOI: 10.3791/58822]
Wu, P. C. et al. Chondrogenesis in scleral stem/progenitor cells and its association with form-deprived myopia in mice. Mol. Vis. 21, 138–147 (2015).
[PMID: 25684979]
Yan, T. et al. Daily injection but not continuous infusion of apomorphine inhibits form-deprivation myopia in micedaily injection versus continuous infusion of APO. Investig. Ophthalmol. Vis. Sci. 56, 2475–2485. https://doi.org/10.1167/iovs.13-12361 (2015).
[DOI: 10.1167/iovs.13-12361]
Huang, F. et al. Dopamine D1 receptors contribute critically to the apomorphine-induced inhibition of form-deprivation myopia in mice. Investig. Ophthalmol. Vis. Sci. 59, 2623–2634. https://doi.org/10.1167/iovs.17-22578 (2018).
[DOI: 10.1167/iovs.17-22578]
Schaeffel, F., Burkhardt, E., Howland, H. C. & Williams, R. W. Measurement of refractive state and deprivation myopia in two strains of mice. Optom. Vis. Sci. Off. Publ. Am. Acad. Optom. 81, 99–110 (2004).
[DOI: 10.1097/00006324-200402000-00008]
Yuan, Y., Chen, F., Shen, M., Lu, F. & Wang, J. Repeated measurements of the anterior segment during accommodation using long scan depth optical coherence tomography. Eye Contact Lens 38, 102–108. https://doi.org/10.1097/ICL.0b013e318243e795 (2012).
[DOI: 10.1097/ICL.0b013e318243e795]
Shen, M. et al. SD-OCT with prolonged scan depth for imaging the anterior segment of the eye. Ophthalmic Surg. Lasers Imaging Off. J. Int. Soc. Imaging Eye 41(Suppl), S65-69. https://doi.org/10.3928/15428877-20101031-18 (2010).
[DOI: 10.3928/15428877-20101031-18]
Wu, H. et al. Scleral hypoxia is a target for myopia control. Proc. Natl. Acad. Sci. U.S.A. 115, E7091–E7100. https://doi.org/10.1073/pnas.1721443115 (2018).
[DOI: 10.1073/pnas.1721443115]
Ibrahim, J. G. & Molenberghs, G. Missing data methods in longitudinal studies: a review. Test 18, 1–43. https://doi.org/10.1007/s11749-009-0138-x (2009).
[DOI: 10.1007/s11749-009-0138-x]
Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140. https://doi.org/10.1038/nn.2467 (2010).
[DOI: 10.1038/nn.2467]
Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572. https://doi.org/10.1038/nbt1037 (2004).
[DOI: 10.1038/nbt1037]
Drobizhev, M., Makarov, N. S., Tillo, S. E., Hughes, T. E. & Rebane, A. Two-photon absorption properties of fluorescent proteins. Nat. Methods 8, 393–399. https://doi.org/10.1038/nmeth.1596 (2011).
[DOI: 10.1038/nmeth.1596]
Jennings, M. et al. Refining rodent husbandry: the mouse. Report of the rodent refinement working party. Lab. Anim. 32, 233–259. https://doi.org/10.1258/002367798780559301 (1998).
[DOI: 10.1258/002367798780559301]
Zhang, Z., Wang, H. J., Wang, D. R., Qu, W. M. & Huang, Z. L. Red light at intensities above 10 lx alters sleep-wake behavior in mice. Light Sci. Appl. 6, e16231. https://doi.org/10.1038/lsa.2016.231 (2017).
[DOI: 10.1038/lsa.2016.231]
Rucker, F. J. The role of luminance and chromatic cues in emmetropisation. Ophthalmic Physiol. Opt. J. Br. Coll. Ophthalmic Opticians 33, 196–214. https://doi.org/10.1111/opo.12050 (2013).
[DOI: 10.1111/opo.12050]
Qian, Y.-S. et al. Incidence of myopia in high school students with and without red–green color vision deficiency. Investig. Ophthalmol. Vis. Sci. 50, 1598–1605. https://doi.org/10.1167/iovs.07-1362 (2009).
[DOI: 10.1167/iovs.07-1362]
Rajavi, Z. et al. Prevalence of color vision deficiency and its correlation with amblyopia and refractive errors among primary school children. J. Ophthalmic Vis. Res. 10, 130–138. https://doi.org/10.4103/2008-322X.163778 (2015).
[DOI: 10.4103/2008-322X.163778]
Ostadimoghaddam, H. et al. Prevalence of refractive errors in students with and without color vision deficiency. J. Ophthalmic Vis. Res. 9, 484–486. https://doi.org/10.4103/2008-322X.150828 (2014).
[DOI: 10.4103/2008-322X.150828]
Lin, H. Y., Chen, L. Q. & Wang, M. L. Improving discrimination in color vision deficiency by image re-coloring. Sensors https://doi.org/10.3390/s19102250 (2019).
[DOI: 10.3390/s19102250]
Donnelly, H. & Saibaba, P. Light intensity and the oestrous cycle in albino and normally pigmented mice. Lab. Anim. 27, 385–390. https://doi.org/10.1258/002367793780745598 (1993).
[DOI: 10.1258/002367793780745598]
Lin, Y. C., Chen, Z. A. & Shen, C. H. The simulation and fabrication of Ag/SiO/Ag thin films color filter. Phys. Procedia 32, 19–30. https://doi.org/10.1016/j.phpro.2012.03.513 (2012).
[DOI: 10.1016/j.phpro.2012.03.513]