Monoclonal Antibody-Based Therapies for Myasthenia Gravis.

Sawsan Alabbad, Mohanad AlGaeed, Patricia Sikorski, Henry J Kaminski
Author Information
  1. Sawsan Alabbad: Department of Neurology, George Washington University, 2150 Pennsylvania Avenue NW, Washington, DC, 20008, USA.
  2. Mohanad AlGaeed: Department of Neurology, George Washington University, 2150 Pennsylvania Avenue NW, Washington, DC, 20008, USA.
  3. Patricia Sikorski: Department of Neurology, George Washington University, 2150 Pennsylvania Avenue NW, Washington, DC, 20008, USA.
  4. Henry J Kaminski: Department of Neurology, George Washington University, 2150 Pennsylvania Avenue NW, Washington, DC, 20008, USA. HKaminski@mfa.gwu.edu. ORCID

Abstract

Myasthenia gravis (MG) is an autoimmune, neuromuscular disorder that produces disabling weakness through a compromise of neuromuscular transmission. The disease fulfills strict criteria of an antibody-mediated disease. Close to 90% of patients have antibodies directed towards the nicotinic acetylcholine receptor (AChR) on the post-synaptic surface of skeletal muscle and another 5% to the muscle-specific kinase, which is involved in concentrating the AChR to the muscle surface of the neuromuscular junction. Conventional treatments of intravenous immunoglobulin and plasma exchange reduce autoantibody levels to produce their therapeutic effect, while prednisone and immunosuppressives do so by moderating autoantibody production. None of these treatments were specifically developed for MG and have a range of adverse effects. The extensive advances in monoclonal antibody technology allowing specific modulation of biological pathways has led to a tremendous increase in the potential treatment options. For MG, monoclonal antibody therapeutics target the effector mechanism of complement inhibition and the reduction of antibody levels by FcRn inhibition. Antibodies directed against CD20 and signaling pathways, which support lymphocyte activity, have been used to reduce autoantibody production. Thus far, only eculizumab, an antibody against C5, has reached the clinic. We review the present status of monoclonal antibody-based treatments for MG that have entered human testing and offer the promise to transform treatment of MG.

References

  1. J Neuromuscul Dis. 2017;4(3):251-257 [PMID: 28869483]
  2. N Engl J Med. 2019 Aug 15;381(7):614-625 [PMID: 31050279]
  3. Lancet Neurol. 2018 Jun;17(6):519-529 [PMID: 29685815]
  4. Am J Obstet Gynecol. 2019 May;220(5):498.e1-498.e9 [PMID: 30849355]
  5. Neuromuscul Disord. 2006 Jul;16(7):459-67 [PMID: 16793269]
  6. J Clin Invest. 2018 Oct 1;128(10):4372-4386 [PMID: 30040076]
  7. Muscle Nerve. 2013 Jul;48(1):76-84 [PMID: 23512355]
  8. J Neurol Sci. 2019 Nov 15;406:116428 [PMID: 31574325]
  9. Front Immunol. 2015 Oct 16;6:529 [PMID: 26528290]
  10. Neurology. 2000 Jul 12;55(1):16-23 [PMID: 10891897]
  11. MAbs. 2018 Oct;10(7):1111-1130 [PMID: 30130439]
  12. PLoS One. 2014 Jul 22;9(7):e102231 [PMID: 25050620]
  13. N Engl J Med. 2017 Mar 30;376(13):e25 [PMID: 28355508]
  14. Muscle Nerve. 2012 Jun;45(6):909-17 [PMID: 22581550]
  15. Neurology. 2018 Apr 17;90(16):e1425-e1434 [PMID: 29661905]
  16. JAMA Neurol. 2020 May 1;77(5):582-592 [PMID: 32065623]
  17. Lancet Neurol. 2017 Dec;16(12):976-986 [PMID: 29066163]
  18. Am J Transplant. 2018 Dec;18(12):2895-2904 [PMID: 29665205]
  19. Front Immunol. 2020 May 05;11:613 [PMID: 32431692]
  20. F1000Res. 2016 Jun 27;5: [PMID: 27408701]
  21. Muscle Nerve. 2016 Dec;54(6):1030-1033 [PMID: 27121160]
  22. Nat Rev Rheumatol. 2019 Jul;15(7):403-412 [PMID: 31165780]
  23. Ann N Y Acad Sci. 2018 Feb;1413(1):5-10 [PMID: 29377153]
  24. Cells. 2019 Nov 27;8(12): [PMID: 31783629]
  25. Br J Clin Pharmacol. 2020 Jul;86(7):1314-1325 [PMID: 32045493]
  26. N Engl J Med. 2014 Feb 13;370(7):632-9 [PMID: 24521109]
  27. Brain. 2003 Oct;126(Pt 10):2304-11 [PMID: 12821509]
  28. Muscle Nerve. 2017 Aug;56(2):185-196 [PMID: 28164324]
  29. J Clin Med. 2016 Nov 24;5(12): [PMID: 27886126]
  30. J Immunol. 2020 Oct 1;205(7):1743-1751 [PMID: 32839239]
  31. Muscle Nerve. 2008 Feb;37(2):141-9 [PMID: 18059039]
  32. Front Immunol. 2020 Jun 03;11:917 [PMID: 32582144]
  33. Neurology. 2014 Feb 18;82(7):573-81 [PMID: 24453078]
  34. N Engl J Med. 2017 Apr 27;376(17):1694 [PMID: 28445663]
  35. J Neurol. 2021 May;268(5):1643-1664 [PMID: 31482201]
  36. Pract Neurol. 2015 Jun;15(3):199-206 [PMID: 25977271]
  37. Neurology. 2017 Sep 5;89(10):1069-1077 [PMID: 28801338]
  38. N Engl J Med. 2004 Feb 5;350(6):552-9 [PMID: 14762182]
  39. Arthritis Res Ther. 2013;15 Suppl 1:S3 [PMID: 23566754]
  40. J Autoimmun. 2014 Aug;52:44-52 [PMID: 24393484]
  41. Int J Neurosci. 2018 Jan;128(1):15-24 [PMID: 28625092]
  42. Nat Biotechnol. 2007 Nov;25(11):1256-64 [PMID: 17989688]
  43. Am J Transplant. 2015 Oct;15(10):2576-87 [PMID: 25989700]
  44. Lancet. 1966 Nov 19;2(7473):1087-93 [PMID: 4162525]
  45. Int J Nephrol Renovasc Dis. 2019 Sep 04;12:183-204 [PMID: 31564951]
  46. Drugs. 2018 Mar;78(3):355-366 [PMID: 29396833]
  47. Trends Pharmacol Sci. 2018 Oct;39(10):892-904 [PMID: 30143244]
  48. Mol Immunol. 2015 Oct;67(2 Pt A):131-41 [PMID: 25766596]
  49. Ann Clin Transl Neurol. 2021 Jul;8(7):1398-1407 [PMID: 34043280]
  50. Neurology. 2019 Jun 4;92(23):e2661-e2673 [PMID: 31118245]
  51. MMWR Morb Mortal Wkly Rep. 2017 Jul 14;66(27):734-737 [PMID: 28704351]
  52. Neurology. 2016 Jul 26;87(4):419-25 [PMID: 27358333]
  53. Am J Transplant. 2013 Sep;13(9):2280-92 [PMID: 23855587]
  54. Front Immunol. 2020 Jan 10;10:3052 [PMID: 31998320]
  55. Expert Rev Neurother. 2018 Jul;18(7):573-588 [PMID: 29932785]
  56. Muscle Nerve. 2020 Nov;62(5):579-592 [PMID: 32462710]
  57. Life Sci. 2020 Sep 15;257:118054 [PMID: 32663575]
  58. J Clin Invest. 2006 Nov;116(11):2843-54 [PMID: 17080188]
  59. BMC Med Genet. 2019 Oct 30;20(1):168 [PMID: 31666013]
  60. J Autoimmun. 2014 Aug;52:90-100 [PMID: 24389034]
  61. J Immunol. 2001 Jun 1;166(11):6893-8 [PMID: 11359850]
  62. N Engl J Med. 2016 Aug 11;375(6):511-22 [PMID: 27509100]

MeSH Term

Autoantibodies
Humans
Myasthenia Gravis
Neuromuscular Junction
Receptors, Nicotinic

Chemicals

Autoantibodies
Receptors, Nicotinic

Word Cloud

Created with Highcharts 10.0.0MGantibodyneuromusculartreatmentsautoantibodymonoclonalMyastheniadiseasedirectedAChRsurfacemusclereducelevelsproductionpathwaystreatmentinhibitiongravisautoimmunedisorderproducesdisablingweaknesscompromisetransmissionfulfillsstrictcriteriaantibody-mediatedClose90%patientsantibodiestowardsnicotinicacetylcholinereceptorpost-synapticskeletalanother5%muscle-specifickinaseinvolvedconcentratingjunctionConventionalintravenousimmunoglobulinplasmaexchangeproducetherapeuticeffectprednisoneimmunosuppressivesmoderatingNonespecificallydevelopedrangeadverseeffectsextensiveadvancestechnologyallowingspecificmodulationbiologicalledtremendousincreasepotentialoptionstherapeuticstargeteffectormechanismcomplementreductionFcRnAntibodiesCD20signalingsupportlymphocyteactivityusedThusfareculizumabC5reachedclinicreviewpresentstatusantibody-basedenteredhumantestingofferpromisetransformMonoclonalAntibody-BasedTherapiesGravis

Similar Articles

Cited By