Methane emissions from natural gas vehicles in China.

Lei Tao, Kang Sun, Levi M Golston, David J Miller, Tong Zhu, Yue Qin, Yan Zhang, Denise L Mauzerall, Mark A Zondlo
Author Information
  1. Da Pan: Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, 08544, USA. dp7@princeton.edu. ORCID
  2. Lei Tao: Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, 08544, USA.
  3. Kang Sun: Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY, 14260, USA. ORCID
  4. Levi M Golston: Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, 08544, USA.
  5. David J Miller: Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, 08544, USA. ORCID
  6. Tong Zhu: State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 100871, Beijing, China.
  7. Yue Qin: Department of Geography, The Ohio State University, Columbus, OH, 43210, USA. ORCID
  8. Yan Zhang: Department of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing, MI, 48824, USA. ORCID
  9. Denise L Mauzerall: Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, 08544, USA.
  10. Mark A Zondlo: Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, 08544, USA. mzondlo@princeton.edu. ORCID

Abstract

Natural gas vehicles (NGVs) have been promoted in China to mitigate air pollution, yet our measurements and analyses show that NGV growth in China may have significant negative impacts on climate change. We conducted real-world vehicle emission measurements in China and found high methane emissions from heavy-duty NGVs (90% higher than current emission limits). These emissions have been ignored in previous emission estimates, leading to biased results. Applying our observations to life-cycle analyses, we found that switching to NGVs from conventional vehicles in China has led to a net increase in greenhouse gas (GHG) emissions since 2000. With scenario analyses, we also show that the next decade will be critical for China to reverse the trend with the upcoming China VI standard for heavy-duty vehicles. Implementing and enforcing the China VI standard is challenging, and the method demonstrated here can provide critical information regarding the fleet-level CH emissions from NGVs.

References

  1. NGV Global. NGV Statistics. http://www.ngvglobal.org/ngv-statistics/ (2019).
  2. Thiruvengadam, A., Besch, M., Padmanaban, V., Pradhan, S. & Demirgok, B. Natural gas vehicles in heavy-duty transportation-A review. Energy Policy 122, 253–259 (2018). [DOI: 10.1016/j.enpol.2018.07.052]
  3. Hao, H., Liu, Z., Zhao, F. & Li, W. Natural gas as vehicle fuel in China: a review. Renew. Sustain. Energy Rev. 62, 521–533 (2016). [DOI: 10.1016/j.rser.2016.05.015]
  4. Moultak, M., Lutsey, N. & Hall, D. Transitioning to Zero-Emission Heavy-duty Freight Vehicles. https://theicct.org/publications/transitioning-zero-emission-heavy-duty-freight-vehicles (2017).
  5. National Development and Reform Commission of the People’s Republic of China. 13th Five-Year Plan for Natural Gas Development. https://www.ndrc.gov.cn/fggz/fzzlgh/gjjzxgh/201706/t20170607_1196794.html (2017).
  6. Wu, Y. et al. On-road vehicle emissions and their control in China: a review and outlook. Sci. Total Environ. 574, 332–349 (2017). [DOI: 10.1016/j.scitotenv.2016.09.040]
  7. Ministry of Ecology and Environment of the People’s Republic of China. China Vehicle Environmental Management Annual Report. http://www.gov.cn/guoqing/2019-04/09/5380744/files/88ce80585dfd49c3a7d51c007c0a5112.pdf (2018).
  8. State Council of the People’s Republic of China. Three-Year Action Plan to Win the Blue Sky Defense War. www.gov.cn/zhengce/content/2018-07/03/content_5303158.htm (2018).
  9. Xie, G. Record Sales of LNG Heavy-Duty Trucks in the First Half of 2019! 8.5 Million Vehicles Sold! 300% Increase. https://finance.sina.com.cn/chanjing/cyxw/2019-01-02/doc-ihqfskcn3409487.shtml (2019).
  10. Zhang, S. et al. Can Euro V heavy-duty diesel engines, diesel hybrid and alternative fuel technologies mitigate NOX emissions? New evidence from on-road tests of buses in China. Appl. Energy 132, 118–126 (2014). [DOI: 10.1016/j.apenergy.2014.07.008]
  11. Guo, J. et al. On-road measurement of regulated pollutants from diesel and CNG buses with urea selective catalytic reduction systems. Atmos. Environ. 99, 1–9 (2014). [DOI: 10.1016/j.atmosenv.2014.07.032]
  12. Myhre, G. et al. Anthropogenic and natural radiative forcing. Clim. Change 423, 658–740 (2013).
  13. Peng, S. et al. Inventory of anthropogenic methane emissions in mainland China from 1980 to 2010. Atmos. Chem. Phys. 16, 14545–14562 (2016). [DOI: 10.5194/acp-16-14545-2016]
  14. Song, H., Ou, X., Yuan, J., Yu, M. & Wang, C. Energy consumption and greenhouse gas emissions of diesel/LNG heavy-duty vehicle fleets in China based on a bottom-up model analysis. Energy 140, 966–978 (2017). [DOI: 10.1016/j.energy.2017.09.011]
  15. HE, L. et al. CH4 and N2O emission inventory for motor vehicles in China in 2010. Res. Environ. Sci. 27, 28–35 (2014).
  16. Huo, H., Zhang, Q., Liu, F. & He, K. Climate and environmental effects of electric vehicles versus compressed natural gas vehicles in China: a life-cycle analysis at provincial level. Environ. Sci. Technol. 47, 1711–1718 (2013). [DOI: 10.1021/es4037034]
  17. Ou, X., Zhang, X. & Chang, S. Alternative fuel buses currently in use in China: life-cycle fossil energy use, GHG emissions and policy recommendations. Energy Policy 38, 406–418 (2010). [DOI: 10.1016/j.enpol.2009.09.031]
  18. Burnham, A., Wang, M. & Wu, Y. Development and applications of GREET 2.7—The Transportation Vehicle-CycleModel. https://doi.org/10.2172/898530~ (2006).
  19. Clark, N. N. et al. Pump-to-wheels methane emissions from the heavy-duty transportation sector. Environ. Sci. Technol. 51, 968–976 (2016). [DOI: 10.1021/acs.est.5b06059]
  20. Clark, N. N. et al. Future methane emissions from the heavy-duty natural gas transportation sector for stasis, high, medium, and low scenarios in 2035. J. Air Waste Manag. Assoc. 67, 1328–1341 (2017). [DOI: 10.1080/10962247.2017.1368737]
  21. Yan, X. & Crookes, R. J. Life cycle analysis of energy use and greenhouse gas emissions for road transportation fuels in China. Renew. Sustain. Energy Rev. 13, 2505–2514 (2009). [DOI: 10.1016/j.rser.2009.06.012]
  22. Ou, X. & Zhang, X. Life-cycle analyses of energy consumption and GHG emissions of natural gas-based alternative vehicle fuels in China. J. Energy 2013, 268263 (2013).
  23. Hu, N. et al. Large methane emissions from natural gas vehicles in Chinese cities. Atmos. Environ. 187, 374–380 (2018). [DOI: 10.1016/j.atmosenv.2018.06.007]
  24. Petrov, A. W., Ferri, D., Tarik, M., Kröcher, O. & Van Bokhoven, J. A. Deactivation aspects of methane oxidation catalysts based on palladium and ZSM-5. Top. Catal. 60, 123–130 (2017). [DOI: 10.1007/s11244-016-0724-6]
  25. Ministry of Transport of the People’s Republic of China. Vehicle “oil to gas” Technical Equipment Needs to be Upgraded (In Chinese). http://www.mot.gov.cn/jiaotongyaowen/201808/t20180816_3058294.html (2018).
  26. Anenberg, S. C. et al. Impacts and mitigation of excess diesel-related NO x emissions in 11 major vehicle markets. Nature 545, 467–471 (2017). [DOI: 10.1038/nature22086]
  27. Ministry of Ecological Environment of the People’s Republic of China. Limits and Measurement Methods for Emissions from Diesel Fuelled Heavy-duty Vehicles (China VI). http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/dqhjbh/dqydywrwpfbz/201807/t20180703_445995.shtml (2018).
  28. Hargreaves, D. & Baker, C. Gaussian puff model of an urban street canyon. J. Wind Eng. Ind. Aerodyn. 69, 927–939 (1997). [DOI: 10.1016/S0167-6105(97)00218-3]
  29. Sun, K., Tao, L., Miller, D. J., Khan, M. A. & Zondlo, M. A. On-road ammonia emissions characterized by mobile, open-path measurements. Environ. Sci. Technol. 48, 3943–3950 (2014). [DOI: 10.1021/es4047704]
  30. Sun, K. et al. Vehicle emissions as an important urban ammonia source in the United States and China. Environ. Sci. Technol. 51, 2472–2481 (2017). [DOI: 10.1021/acs.est.6b02805]
  31. Ministry of Environmental Protection of the People’s Republic of China. Limits and Measurement Methods for Exhaust Pollutants from Compression Ignition and Gas Fuelled Positive Ignition Engines of Vehicles (III, IV, V). http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/dqhjbh/dqydywrwpfbz/200701/t20070101_67495.htm (2005).
  32. Thiruvengadam, A. et al. Unregulated greenhouse gas and ammonia emissions from current technology heavy-duty vehicles. J. Air Waste Manag. Assoc. 66, 1045–1060 (2016). [DOI: 10.1080/10962247.2016.1158751]
  33. Karavalakis, G. et al. Regulated, greenhouse gas, and particulate emissions from lean-burn and stoichiometric natural gas heavy-duty vehicles on different fuel compositions. Fuel 175, 146–156 (2016). [DOI: 10.1016/j.fuel.2016.02.034]
  34. Yoon, S. et al. Criteria pollutant and greenhouse gas emissions from CNG transit buses equipped with three-way catalysts compared to lean-burn engines and oxidation catalyst technologies. J. Air Waste Manag. Assoc. 63, 926–933 (2013). [DOI: 10.1080/10962247.2013.800170]
  35. Hajbabaei, M., Karavalakis, G., Johnson, K. C., Lee, L. & Durbin, T. D. Impact of natural gas fuel composition on criteria, toxic, and particle emissions from transit buses equipped with lean burn and stoichiometric engines. Energy 62, 425–434 (2013). [DOI: 10.1016/j.energy.2013.09.040]
  36. Nylund, N.-O. & Koponen, K. Fuel and Technology Alternatives for Buses: Overall Energy Efficiency and Emission Performance. https://cris.vtt.fi/en/publications/fuel-and-technology-alternatives-for-buses-overall-energy-efficie (2012).
  37. Olofsson, M., Erlandsson, L. & Willner, K. Enheanced Emission Performance and Fuel Efficiency for HD Methane Engines (Final Report). https://www.ieabioenergy.com/wp-content/uploads/2014/09/Enhanced-emission-performance-and-fuel-efficiency-of-HD-methane-engines-2014-Final-report.pdf (2014).
  38. Grigoratos, T., Fontaras, G., Martini, G. & Peletto, C. A study of regulated and green house gas emissions from a prototype heavy-duty compressed natural gas engine under transient and real life conditions. Energy 103, 340–355 (2016). [DOI: 10.1016/j.energy.2016.02.157]
  39. Stettler, M. E., Midgley, W. J., Swanson, J. J., Cebon, D. & Boies, A. M. Greenhouse gas and noxious emissions from dual fuel diesel and natural gas heavy goods vehicles. Environ. Sci. Technol. 50, 2018–2026 (2016). [DOI: 10.1021/acs.est.5b04240]
  40. Einewall, P., Tunestål, P. & Johansson, B. Lean Burn Natural Gas Operation vs. Stoichiometric Operation with EGR and A Three Way Catalyst. Report no. 0148-7191 (SAE Technical Paper, 2005).
  41. General Administration of Quality Supervision. Fuel Consumption Limits for Heavy-Duty Commercial Vehicles. http://www.gb688.cn/bzgk/gb/newGbInfo?hcno=9C036161B1CEAFDA5225B7184A67229B (2018).
  42. National Bureau of Statistics of China. China Statistical Yearbook (National Bureau of Statistics of China, 2002–2018).
  43. Zhao, Y., Nielsen, C. P., McElroy, M. B., Zhang, L. & Zhang, J. CO emissions in China: uncertainties and implications of improved energy efficiency and emission control. Atmos. Environ. 49, 103–113 (2012). [DOI: 10.1016/j.atmosenv.2011.12.015]
  44. Xi, Y., Ottinger, N. & Liu, Z. G. Effect of Reductive Regeneration Conditions on Reactivity and Stability of A Pd-based Oxidation Catalyst for Lean-Burn Natural Gas Applications. Report no. 0148-7191 (SAE Technical Paper, 2016).
  45. Hu, W. et al. Enhancement of activity and hydrothermal stability of Pd/ZrO2-Al2O3 doped by Mg for methane combustion under lean conditions. Fuel 194, 368–374 (2017). [DOI: 10.1016/j.fuel.2016.11.028]
  46. Kim, J., Kim, E., Han, J. & Han, H. S. Pt/Pd bimetallic catalyst with improved activity and durability for lean-burn CNG engines. SAE Int. J. Fuels Lubr. 6, 651–656 (2013). [DOI: 10.4271/2013-01-2591]
  47. Petrov, A. W. et al. Stable complete methane oxidation over palladium based zeolite catalysts. Nat. Commun. 9, 1–8 (2018). [DOI: 10.1038/s41467-018-04748-x]
  48. Reynolds, C. C., Grieshop, A. P. & Kandlikar, M. Climate and health relevant emissions from in-use Indian three-wheelers fueled by natural gas and gasoline. Environ. Sci. Technol. 45, 2406–2412 (2011). [DOI: 10.1021/es102430p]
  49. Ong, H., Mahlia, T. & Masjuki, H. A review on emissions and mitigation strategies for road transport in Malaysia. Renew. Sustain. Energy Rev. 15, 3516–3522 (2011). [DOI: 10.1016/j.rser.2011.05.006]
  50. Lowell, D. & Kamakaté, F. Urban Off-Cycle NOX Emissions from Euro IV/V Trucks and Buses (The International Council on Clean Transportation, 2012).
  51. Franco, V. et al. Road vehicle emission factors development: a review. Atmos. Environ. 70, 84–97 (2013). [DOI: 10.1016/j.atmosenv.2013.01.006]
  52. Xie, S. et al. Real-world emission characteristics of natural gas-gasoline bi-fuel vehicles. Acta Sci. Circumstantiae 31, 2347–2353 (2011).
  53. Cedigaz. India’s Vision to A Gas-based Economy Drivers and Challenges. https://www.cedigaz.org/indias-vision-gas-based-economy-drivers-challenges/ (2017).
  54. Singh, S.P. SC Order on Conversion of Diesel-petrol Taxis to CNG will Boost Volumes for CGD Players, Says India Ratings. https://www.business-standard.com/article/current-affairs/sc-order-on-conversion-of-diesel-petrol-taxis-to-cng-will-boost-volumes-for-cgd-players-says-india-ratings-116050401127_1.html (2016).
  55. Reynolds, C. C. O. & Kandlikar, M. Climate impacts of air quality policy: switching to a natural gas-fueled public transportation system in New Delhi. Environ. Sci. Technol. 42, 5860–5865 (2008). [DOI: 10.1021/es702863p]
  56. Tao, L. et al. Low-power, open-path mobile sensing platform for high-resolution measurements of greenhouse gases and air pollutants. Appl. Phys. B 119, 153–164 (2015). [DOI: 10.1007/s00340-015-6069-1]
  57. Hesterberg, T. W., Lapin, C. A. & Bunn, W. B. A comparison of emissions from vehicles fueled with diesel or compressed natural gas. Environ. Sci. Technol. 42, 6437–6445 (2008). [DOI: 10.1021/es071718i]
  58. Eggleston, S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories Vol. 5 (Institute for Global Environmental Strategies Hayama, Japan, 2006).
  59. Amirante, R., Distaso, E., Tamburrano, P. & Reitz, R. D. Measured and Predicted Soot Particle Emissions from Natural Gas Engines. Report no. 0148-7191 (SAE Technical Paper, 2015).

Word Cloud

Created with Highcharts 10.0.0ChinaemissionsvehiclesNGVsgasanalysesemissionmeasurementsshowfoundheavy-dutycriticalVIstandardNaturalpromotedmitigateairpollutionyetNGVgrowthmaysignificantnegativeimpactsclimatechangeconductedreal-worldvehiclehighmethane90%highercurrentlimitsignoredpreviousestimatesleadingbiasedresultsApplyingobservationslife-cycleswitchingconventionallednetincreasegreenhouseGHGsince2000scenarioalsonextdecadewillreversetrendupcomingImplementingenforcingchallengingmethoddemonstratedcanprovideinformationregardingfleet-levelCHMethanenatural

Similar Articles

Cited By