It Is Hot in the Sun: Antarctic Mosses Have High Temperature Optima for Photosynthesis Despite Cold Climate.

Alicia V Perera-Castro, Melinda J Waterman, Johanna D Turnbull, Michael B Ashcroft, Ella McKinley, Jennifer R Watling, Jessica Bramley-Alves, Angelica Casanova-Katny, Gustavo Zuniga, Jaume Flexas, Sharon A Robinson
Author Information
  1. Alicia V Perera-Castro: Department of Biology, Universitat de les Illes Balears, INAGEA, Palma de Mallorca, Spain.
  2. Melinda J Waterman: Centre for Sustainable Ecosystem Solutions, School of Earth, Atmosphere and Life Sciences, University of Wollongong, Wollongong, NSW, Australia.
  3. Johanna D Turnbull: Centre for Sustainable Ecosystem Solutions, School of Earth, Atmosphere and Life Sciences, University of Wollongong, Wollongong, NSW, Australia.
  4. Michael B Ashcroft: Centre for Sustainable Ecosystem Solutions, School of Earth, Atmosphere and Life Sciences, University of Wollongong, Wollongong, NSW, Australia.
  5. Ella McKinley: School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia.
  6. Jennifer R Watling: School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia.
  7. Jessica Bramley-Alves: Centre for Sustainable Ecosystem Solutions, School of Earth, Atmosphere and Life Sciences, University of Wollongong, Wollongong, NSW, Australia.
  8. Angelica Casanova-Katny: Laboratorio de Ecofisiología Vegetal y Cambio Climático y Núcleo de Estudios Ambientales (NEA), Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile.
  9. Gustavo Zuniga: Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
  10. Jaume Flexas: Department of Biology, Universitat de les Illes Balears, INAGEA, Palma de Mallorca, Spain.
  11. Sharon A Robinson: Centre for Sustainable Ecosystem Solutions, School of Earth, Atmosphere and Life Sciences, University of Wollongong, Wollongong, NSW, Australia.

Abstract

The terrestrial flora of Antarctica's frozen continent is restricted to sparse ice-free areas and dominated by lichens and bryophytes. These plants frequently battle sub-zero temperatures, extreme winds and reduced water availability; all influencing their ability to survive and grow. Antarctic mosses, however, can have canopy temperatures well above air temperature. At midday, canopy temperatures can exceed 15°C, depending on moss turf water content. In this study, the optimum temperature of photosynthesis was determined for six Antarctic moss species: , , , , , and collected from King George Island (maritime Antarctica) and/or the Windmill Islands, East Antarctica. Both chlorophyll fluorescence and gas exchange showed maximum values of electron transport rate occurred at canopy temperatures higher than 20°C. The optimum temperature for both net assimilation of CO and photoprotective heat dissipation of three East Antarctic species was 20-30°C and at temperatures below 10°C, mesophyll conductance did not significantly differ from 0. Maximum mitochondrial respiration rates occurred at temperatures higher than 35°C and were lower by around 80% at 5°C. Despite the extreme cold conditions that Antarctic mosses face over winter, the photosynthetic apparatus appears optimised to warm temperatures. Our estimation of the total carbon balance suggests that survival in this cold environment may rely on a capacity to maximize photosynthesis for brief periods during summer and minimize respiratory carbon losses in cold conditions.

Keywords

References

  1. Biochim Biophys Acta. 2007 Sep;1768(9):2310-8 [PMID: 17618598]
  2. Funct Plant Biol. 2009 Jun;36(6):516-526 [PMID: 32688666]
  3. Front Plant Sci. 2020 Jun 09;11:766 [PMID: 32582270]
  4. Front Plant Sci. 2020 Aug 28;11:502359 [PMID: 32983208]
  5. Photosynth Res. 1990 Sep;25(3):173-85 [PMID: 24420348]
  6. New Phytol. 1997 Oct;137(2):231-240 [PMID: 33863176]
  7. Plant Physiol. 1992 Apr;98(4):1429-36 [PMID: 16668811]
  8. Photosynth Res. 2007 Nov-Dec;94(2-3):321-32 [PMID: 17786581]
  9. J Exp Bot. 2018 Jul 18;69(16):3791-3795 [PMID: 30032258]
  10. Proc Natl Acad Sci U S A. 1936 Aug;22(8):504-11 [PMID: 16577734]
  11. Proteomics. 2005 Feb;5(3):758-68 [PMID: 15714440]
  12. Trends Plant Sci. 2019 Oct;24(10):947-958 [PMID: 31362860]
  13. J Plant Res. 2002 Apr;115(1118):99-106 [PMID: 12884132]
  14. New Phytol. 2019 May;222(3):1256-1270 [PMID: 30623444]
  15. Plant Physiol. 1992 Mar;98(3):1105-14 [PMID: 16668733]
  16. Plant Cell Environ. 2013 Apr;36(4):745-56 [PMID: 22882584]
  17. Glob Chang Biol. 2020 Feb;26(2):337-339 [PMID: 31799715]
  18. Plant Cell Environ. 2013 Dec;36(12):2108-19 [PMID: 23869820]
  19. J Integr Plant Biol. 2010 Aug;52(8):712-22 [PMID: 20666927]
  20. Photosynth Res. 1993 Jul;37(1):19-39 [PMID: 24317651]
  21. Plant Physiol. 1997 Feb;113(2):639-648 [PMID: 12223632]
  22. Plant Physiol. 2002 Dec;130(4):1992-8 [PMID: 12481082]
  23. Plant Cell Physiol. 2006 Aug;47(8):1069-80 [PMID: 16816408]
  24. J Exp Bot. 2006;57(12):3057-67 [PMID: 16882645]
  25. Ann Bot. 2013 Mar;111(3):455-65 [PMID: 23258418]
  26. Biol Rev Camb Philos Soc. 2009 Aug;84(3):449-84 [PMID: 19659886]
  27. J Exp Bot. 2002 Apr;53(369):609-20 [PMID: 11886880]
  28. Planta. 2008 Nov;228(6):999-1009 [PMID: 18679711]
  29. Glob Chang Biol. 2015 Jun;21(6):2454-64 [PMID: 25545349]
  30. Photosynth Res. 2008 Jun;96(3):201-15 [PMID: 18415696]
  31. Plant Cell Environ. 2017 Sep;40(9):1940-1959 [PMID: 28620951]
  32. Sci Prog. 2008;91(Pt 2):203-17 [PMID: 18717370]
  33. Physiol Plant. 2019 Mar;165(3):511-523 [PMID: 29602170]
  34. J Exp Bot. 2000 Apr;51(345):659-68 [PMID: 10938857]
  35. Plant Cell Environ. 2007 Sep;30(9):1086-106 [PMID: 17661749]
  36. Planta. 1991 May;184(2):226-34 [PMID: 24194074]
  37. Plant Cell Environ. 2015 Dec;38(12):2541-50 [PMID: 25923314]
  38. Photosynth Res. 2019 Jul;141(1):65-82 [PMID: 30771063]
  39. Funct Plant Biol. 2009 Jan;36(1):37-49 [PMID: 32688625]
  40. Front Plant Sci. 2018 Nov 14;9:1648 [PMID: 30487806]
  41. Plant Physiol. 2007 Dec;145(4):1506-20 [PMID: 17932304]
  42. Physiol Plant. 2015 Dec;155(4):414-23 [PMID: 25626882]
  43. Front Plant Sci. 2017 Jun 06;8:945 [PMID: 28634485]
  44. Oecologia. 1999 Sep;120(4):499-505 [PMID: 28308299]
  45. Glob Chang Biol. 2020 Jun;26(6):3178-3180 [PMID: 32227664]
  46. Plant Physiol. 2009 Feb;149(2):1061-75 [PMID: 19011000]
  47. Plant Sci. 2012 Sep;193-194:70-84 [PMID: 22794920]
  48. Plant Cell Environ. 2011 Nov;34(11):1999-2008 [PMID: 21752031]
  49. J Exp Bot. 2011 Jun;62(10):3489-99 [PMID: 21382918]
  50. Biochim Biophys Acta. 1981 May 13;635(3):476-87 [PMID: 6786347]
  51. Physiol Plant. 2004 Jun;121(2):272-281 [PMID: 15153195]
  52. New Phytol. 2017 Apr;214(1):66-80 [PMID: 27918624]
  53. Planta. 2006 May;223(6):1165-77 [PMID: 16333639]
  54. Plant Cell Environ. 2015 Apr;38(4):629-37 [PMID: 25224884]
  55. Planta. 2001 Feb;212(3):332-42 [PMID: 11289597]
  56. Plant Physiol. 1995 Nov;109(3):955-961 [PMID: 12228644]

Word Cloud

Created with Highcharts 10.0.0temperaturesAntarcticcanopytemperatureAntarcticacoldcarbonbryophytesextremewatermossescanmossoptimumphotosynthesisEastelectrontransportrateoccurredhighernetassimilationmesophyllconductancerespirationDespiteconditionsbalanceterrestrialfloraAntarctica'sfrozencontinentrestrictedsparseice-freeareasdominatedlichensplantsfrequentlybattlesub-zerowindsreducedavailabilityinfluencingabilitysurvivegrowhoweverwellairmiddayexceed15°Cdependingturfcontentstudydeterminedsixspecies:collectedKingGeorgeIslandmaritimeand/orWindmillIslandschlorophyllfluorescencegasexchangeshowedmaximumvalues20°CCOphotoprotectiveheatdissipationthreespecies20-30°C10°Csignificantlydiffer0Maximummitochondrialrates35°Cloweraround80%5°CfacewinterphotosyntheticapparatusappearsoptimisedwarmestimationtotalsuggestssurvivalenvironmentmayrelycapacitymaximizebriefperiodssummerminimizerespiratorylossesHotSun:MossesHighTemperatureOptimaPhotosynthesisColdClimateCO2non-photochemicalquenching

Similar Articles

Cited By