Modified vaccinia Ankara vaccine expressing Marburg virus-like particles protects guinea pigs from lethal Marburg virus infection.

Delphine C Malherbe, Arban Domi, Mary J Hauser, Michelle Meyer, Bronwyn M Gunn, Galit Alter, Alexander Bukreyev, Farshad Guirakhoo
Author Information
  1. Delphine C Malherbe: Department of Pathology, University of Texas Medical Branch, Galveston, TX USA.
  2. Arban Domi: GeoVax Inc., Atlanta, GA USA.
  3. Mary J Hauser: GeoVax Inc., Atlanta, GA USA.
  4. Michelle Meyer: Department of Pathology, University of Texas Medical Branch, Galveston, TX USA.
  5. Bronwyn M Gunn: Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA USA.
  6. Galit Alter: Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA USA. ORCID
  7. Alexander Bukreyev: Department of Pathology, University of Texas Medical Branch, Galveston, TX USA. ORCID
  8. Farshad Guirakhoo: GeoVax Inc., Atlanta, GA USA.

Abstract

We introduce a new vaccine platform against Marburg virus (MARV) combining the advantages of the immunogenicity of a highly attenuated vaccine vector (Modified Vaccinia Ankara, MVA) with the authentic conformation of virus-like particles (VLPs). Our vaccine, MVA-MARV-VLP, expresses the minimal components of MARV VLPs: the envelope glycoprotein GP and the matrix protein VP40. Electron microscopy confirmed self-assembly and budding of VLPs from infected cells. Prime/boost vaccination of guinea pigs with MVA-MARV-VLP-elicited MARV-specific binding and neutralizing antibody responses. Vaccination also induced Fc-mediated innate immune effector functions including activation of NK cells and antibody-dependent phagocytosis by neutrophils and monocytes. Inoculation of vaccinated animals with guinea pig-adapted MARV demonstrated 100% protection against death and disease with no viremia. Therefore, our vaccine platform, expressing two antigens resulting in assembly of VLPs in the native conformation in vaccinated hosts, can be used as a potent vaccine against MARV.

Keywords

References

  1. Sci Transl Med. 2017 Apr 5;9(384): [PMID: 28381540]
  2. J Virol. 2017 May 12;91(11): [PMID: 28331098]
  3. Cell. 2015 Feb 26;160(5):893-903 [PMID: 25723164]
  4. Virology. 2006 Sep 30;353(2):324-32 [PMID: 16820184]
  5. Sci Rep. 2018 Jan 16;8(1):864 [PMID: 29339750]
  6. BMC Infect Dis. 2016 Nov 25;16(1):708 [PMID: 27887599]
  7. J Virol. 2006 Jul;80(13):6497-516 [PMID: 16775337]
  8. J Virol. 2018 May 14;92(11): [PMID: 29514907]
  9. Vaccine. 2005 Apr 27;23(23):3033-42 [PMID: 15811650]
  10. J Infect Dis. 2015 Oct 1;212 Suppl 2:S258-70 [PMID: 26092858]
  11. Front Immunol. 2019 Jan 22;9:3071 [PMID: 30723475]
  12. Cell Host Microbe. 2018 Aug 8;24(2):221-233.e5 [PMID: 30092199]
  13. Lancet. 2006 Apr 29;367(9520):1399-404 [PMID: 16650649]
  14. J Virol. 2006 Oct;80(19):9659-66 [PMID: 16973570]
  15. PLoS One. 2015 Mar 20;10(3):e0118881 [PMID: 25793502]
  16. Nat Med. 2014 Oct;20(10):1126-9 [PMID: 25194571]
  17. Cell. 2015 Feb 26;160(5):904-912 [PMID: 25723165]
  18. Viruses. 2018 Nov 21;10(11): [PMID: 30469360]
  19. PLoS Pathog. 2015 Jun 26;11(6):e1005016 [PMID: 26115029]
  20. J Virol. 2019 Feb 5;93(4): [PMID: 30518655]
  21. Pathogens. 2019 Aug 28;8(3): [PMID: 31466243]
  22. Lancet Infect Dis. 2015 Oct;15(10):1156-1166 [PMID: 26248510]
  23. Cell Host Microbe. 2020 Jun 10;27(6):976-991.e11 [PMID: 32320678]
  24. Vaccine. 2004 Sep 3;22(25-26):3495-502 [PMID: 15308377]
  25. Nat Med. 2005 Jul;11(7):786-90 [PMID: 15937495]
  26. Mol Ther. 2013 Jul;21(7):1432-44 [PMID: 23670573]
  27. J Virol. 2009 Jul;83(14):7176-84 [PMID: 19420086]

Word Cloud

Created with Highcharts 10.0.0vaccineMARVMarburgVLPsguineaplatformvirusModifiedAnkaraconformationvirus-likeparticlescellspigsvaccinatedexpressingintroducenewcombiningadvantagesimmunogenicityhighlyattenuatedvectorVacciniaMVAauthenticMVA-MARV-VLPexpressesminimalcomponentsVLPs:envelopeglycoproteinGPmatrixproteinVP40Electronmicroscopyconfirmedself-assemblybuddinginfectedPrime/boostvaccinationMVA-MARV-VLP-elicitedMARV-specificbindingneutralizingantibodyresponsesVaccinationalsoinducedFc-mediatedinnateimmuneeffectorfunctionsincludingactivationNKantibody-dependentphagocytosisneutrophilsmonocytesInoculationanimalspig-adapteddemonstrated100%protectiondeathdiseaseviremiaThereforetwoantigensresultingassemblynativehostscanusedpotentvacciniaprotectslethalinfectionBiologicsVaccines

Similar Articles

Cited By