Are Antisense Proteins in Prokaryotes Functional?

Zachary Ardern, Klaus Neuhaus, Siegfried Scherer
Author Information
  1. Zachary Ardern: Chair for Microbial Ecology, Technical University of Munich, Munich, Germany.
  2. Klaus Neuhaus: Chair for Microbial Ecology, Technical University of Munich, Munich, Germany.
  3. Siegfried Scherer: Chair for Microbial Ecology, Technical University of Munich, Munich, Germany.

Abstract

Many prokaryotic RNAs are transcribed from loci outside of annotated protein coding genes. Across bacterial species hundreds of short open reading frames antisense to annotated genes show evidence of both transcription and translation, for instance in ribosome profiling data. Determining the functional fraction of these protein products awaits further research, including insights from studies of molecular interactions and detailed evolutionary analysis. There are multiple lines of evidence, however, that many of these newly discovered proteins are of use to the organism. Condition-specific phenotypes have been characterized for a few. These proteins should be added to genome annotations, and the methods for predicting them standardized. Evolutionary analysis of these typically young sequences also may provide important insights into gene evolution. This research should be prioritized for its exciting potential to uncover large numbers of novel proteins with extremely diverse potential practical uses, including applications in synthetic biology and responding to pathogens.

Keywords

References

  1. Nature. 1976 Nov 4;264(5581):34-41 [PMID: 1004533]
  2. Nucleic Acids Res. 2003 Dec 1;31(23):6976-85 [PMID: 14627830]
  3. PLoS One. 2011;6(11):e27587 [PMID: 22114679]
  4. Genome Biol Evol. 2014 May 09;6(5):1234-7 [PMID: 24814287]
  5. Q Rev Biol. 2010 Dec;85(4):419-45 [PMID: 21243963]
  6. Nat Microbiol. 2019 Nov;4(11):1907-1918 [PMID: 31308523]
  7. BMC Evol Biol. 2018 Feb 12;18(1):21 [PMID: 29433444]
  8. PLoS Biol. 2009 Apr 28;7(4):e96 [PMID: 19402753]
  9. Nucleic Acids Res. 2014 Nov 10;42(20):12425-39 [PMID: 25326325]
  10. RNA Biol. 2018;15(8):1119-1132 [PMID: 30175688]
  11. BMC Genomics. 2017 Feb 28;18(1):216 [PMID: 28245801]
  12. Genome Biol Evol. 2013;5(3):578-90 [PMID: 23431001]
  13. Mol Syst Biol. 2016 Jan 14;12(1):854 [PMID: 26769567]
  14. J Mol Evol. 2019 Dec;87(9-10):317-326 [PMID: 31570957]
  15. mSystems. 2020 Oct 27;5(5): [PMID: 33109751]
  16. BMC Biol. 2015 Apr 16;13:20 [PMID: 25928466]
  17. Microbiol Spectr. 2018 Apr;6(2): [PMID: 29623872]
  18. J Virol. 2019 Oct 15;93(21): [PMID: 31434734]
  19. Nat Rev Genet. 2020 Mar;21(3):191-201 [PMID: 31848477]
  20. Elife. 2022 Mar 28;11: [PMID: 35343439]
  21. Elife. 2016 Dec 10;5: [PMID: 27938662]
  22. Genome Biol Evol. 2015 Jan 28;7(3):642-5 [PMID: 25635041]
  23. Science. 2012 May 4;336(6081):601-4 [PMID: 22556256]
  24. Nucleic Acids Res. 2002 Jan 1;30(1):207-10 [PMID: 11752295]
  25. DNA Res. 2004 Aug 31;11(4):219-31, 311-313 [PMID: 15500248]
  26. Elife. 2019 Feb 06;8: [PMID: 30724162]
  27. Biosystems. 2019 Nov;185:104023 [PMID: 31520875]
  28. Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):11537-11542 [PMID: 27681623]
  29. J Biol Chem. 2020 Jul 3;295(27):8999-9011 [PMID: 32385111]
  30. Nat Biotechnol. 2018 Nov;36(10):996-1004 [PMID: 30148503]
  31. Virology. 2019 Jun;532:39-47 [PMID: 31004987]
  32. Nat Rev Microbiol. 2014 Sep;12(9):647-53 [PMID: 25069631]
  33. Annu Rev Biochem. 2014;83:753-77 [PMID: 24606146]
  34. Proc Natl Acad Sci U S A. 2019 Jan 29;116(5):1733-1738 [PMID: 30635413]
  35. Trends Genet. 2000 Jun;16(6):276-7 [PMID: 10827456]
  36. Gene. 2001 Jul 25;273(1):63-70 [PMID: 11483361]
  37. Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15690-5 [PMID: 26575626]
  38. Nat Rev Genet. 2016 Jul;17(7):379-91 [PMID: 27087500]
  39. Cell. 2016 Dec 15;167(7):1762-1773.e12 [PMID: 27984726]
  40. Electrophoresis. 2004 Apr;25(7-8):1125-35 [PMID: 15095456]
  41. Genome Biol. 2018 Dec 18;19(1):223 [PMID: 30563541]
  42. Mol Microbiol. 2017 Feb;103(3):387-397 [PMID: 27750368]
  43. J Proteomics. 2013 Jun 28;86:27-42 [PMID: 23665149]
  44. ACS Synth Biol. 2019 Mar 15;8(3):466-473 [PMID: 30717589]
  45. Front Microbiol. 2018 May 14;9:931 [PMID: 29867840]
  46. PLoS One. 2016 Jun 03;11(6):e0157016 [PMID: 27258043]
  47. Nucleic Acids Res. 2006;34(19):5416-25 [PMID: 17012275]
  48. Nucleic Acids Res. 2019 Dec 2;47(21):11368-11386 [PMID: 31586395]
  49. Microb Genom. 2020 Feb;6(2): [PMID: 32022660]
  50. PLoS Genet. 2017 Mar 16;13(3):e1006676 [PMID: 28301469]
  51. Gene. 2016 May 15;582(2):143-7 [PMID: 26853049]
  52. Science. 2009 Apr 10;324(5924):218-23 [PMID: 19213877]
  53. J Mol Biol. 1961 Jun;3:318-56 [PMID: 13718526]
  54. FEMS Microbiol Lett. 2014 Jan;350(1):57-64 [PMID: 24111745]
  55. DNA Res. 2016 Jun;23(3):193-201 [PMID: 27013550]
  56. PLoS One. 2012;7(9):e45103 [PMID: 23028785]
  57. DNA Res. 2005;12(5):291-9 [PMID: 16769691]
  58. J Mol Evol. 2017 Apr;84(4):204-213 [PMID: 28405712]
  59. Genome Biol Evol. 2014 Dec 31;7(1):381-90 [PMID: 25552532]
  60. PLoS One. 2016 Oct 13;11(10):e0164228 [PMID: 27736901]
  61. Nat Rev Genet. 2011 Aug 31;12(10):692-702 [PMID: 21878963]
  62. Biochimie. 2019 Sep;164:3-16 [PMID: 30995539]
  63. Nat Ecol Evol. 2018 Jul;2(7):1046-1047 [PMID: 29892059]
  64. BMC Genomics. 2016 Mar 08;17:199 [PMID: 26951544]
  65. Microbiology (Reading). 2016 Jul;162(7):1167-1172 [PMID: 27663516]
  66. PLoS One. 2018 Oct 19;13(10):e0202513 [PMID: 30339683]
  67. Genome Res. 2009 Sep;19(9):1639-45 [PMID: 19541911]
  68. Bioessays. 2017 Dec;39(12): [PMID: 28983932]
  69. Sci Adv. 2016 Mar 04;2(3):e1501363 [PMID: 26973873]
  70. Adv Exp Med Biol. 2015;883:119-34 [PMID: 26621465]
  71. BMC Evol Biol. 2015 Dec 18;15:283 [PMID: 26677845]
  72. mBio. 2019 Mar 5;10(2): [PMID: 30837344]
  73. PLoS Genet. 2012 Jun;8(6):e1002787 [PMID: 22761588]
  74. Environ Microbiol Rep. 2016 Dec;8(6):966-974 [PMID: 27717237]
  75. FEMS Microbiol Lett. 2017 Jan;364(2): [PMID: 27856567]
  76. BMC Microbiol. 2019 Mar 22;19(1):66 [PMID: 30902049]
  77. Cell. 2011 Dec 9;147(6):1295-308 [PMID: 22153074]
  78. J Proteomics. 2016 Oct 21;149:7-14 [PMID: 27535355]
  79. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  80. Curr Biol. 2017 Jul 10;27(13):R661-R663 [PMID: 28697368]
  81. Proteomics. 2016 Jan;16(2):257-72 [PMID: 26442651]
  82. Genome Res. 2010 Nov;20(11):1574-81 [PMID: 20921233]
  83. mBio. 2012 Aug 07;3(4): [PMID: 22872780]
  84. PLoS Genet. 2013;9(7):e1003617 [PMID: 23874220]
  85. Cell. 2019 Aug 22;178(5):1245-1259.e14 [PMID: 31402174]
  86. Mol Biol Evol. 2020 Aug 1;37(8):2440-2449 [PMID: 32243542]
  87. Science. 2010 Apr 23;328(5977):504-8 [PMID: 20413502]
  88. J Protein Chem. 1996 Jan;15(1):59-61 [PMID: 8838590]
  89. Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20454-9 [PMID: 18042713]
  90. Trends Biochem Sci. 2003 Oct;28(10):521-3 [PMID: 14559179]
  91. BMC Genomics. 2017 Jul 21;18(1):553 [PMID: 28732463]
  92. ISME J. 2016 Jul;10(7):1589-601 [PMID: 26744812]
  93. Mol Biol Evol. 2020 Aug 1;37(8):2430-2439 [PMID: 32068869]
  94. PLoS One. 2017 Sep 13;12(9):e0184119 [PMID: 28902868]
  95. Nucleic Acids Res. 2020 Feb 20;48(3):1029-1042 [PMID: 31504789]
  96. Mol Syst Biol. 2019 Feb 22;15(2):e8290 [PMID: 30796087]
  97. Genetics. 2018 Sep;210(1):303-313 [PMID: 30026186]
  98. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  99. RNA Biol. 2012 Aug;9(8):1039-44 [PMID: 22858676]
  100. BMC Genomics. 2016 Feb 24;17:133 [PMID: 26911138]
  101. Bioinformatics. 2010 Mar 15;26(6):841-2 [PMID: 20110278]
  102. Mol Cell. 2019 May 2;74(3):481-493.e6 [PMID: 30904393]
  103. Nat Commun. 2016 Jun 02;7:11605 [PMID: 27251447]
  104. J Mol Biol. 2009 Sep 4;391(5):808-12 [PMID: 19576223]
  105. Sci Rep. 2018 Dec 14;8(1):17875 [PMID: 30552341]
  106. Genome Biol. 2015 Aug 06;16:157 [PMID: 26243257]
  107. Annu Rev Biochem. 1964;33:235-58 [PMID: 14268834]
  108. Curr Opin Microbiol. 2015 Feb;23:102-9 [PMID: 25461580]
  109. Microbiol Spectr. 2018 Jul;6(4): [PMID: 30003872]
  110. Nucleic Acids Res. 2019 Jun 4;47(10):5100-5113 [PMID: 30869136]
  111. Nat Struct Mol Biol. 2013 Apr;20(4):412-8 [PMID: 23552296]
  112. Annu Rev Ecol Evol Syst. 2014 Nov 1;45:179-201 [PMID: 26740803]
  113. Elife. 2019 Nov 01;8: [PMID: 31674305]

Word Cloud

Created with Highcharts 10.0.0proteinsgeneannotatedproteingenesantisenseevidencetranscriptiontranslationresearchincludinginsightsanalysispotentialManyprokaryoticRNAstranscribedlocioutsidecodingAcrossbacterialspecieshundredsshortopenreadingframesshowinstanceribosomeprofilingdataDeterminingfunctionalfractionproductsawaitsstudiesmolecularinteractionsdetailedevolutionarymultiplelineshowevermanynewlydiscovereduseorganismCondition-specificphenotypescharacterizedaddedgenomeannotationsmethodspredictingstandardizedEvolutionarytypicallyyoungsequencesalsomayprovideimportantevolutionprioritizedexcitinguncoverlargenumbersnovelextremelydiversepracticalusesapplicationssyntheticbiologyrespondingpathogensAntisenseProteinsProkaryotesFunctional?antisensefunctionannotationoverlappingselectedeffects

Similar Articles

Cited By