The Neurodevelopmental Hypothesis of Huntington's Disease.

Ellen van der Plas, Jordan L Schultz, Peg C Nopoulos
Author Information
  1. Ellen van der Plas: University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, USA.
  2. Jordan L Schultz: University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, USA.
  3. Peg C Nopoulos: University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, USA.

Abstract

The current dogma of HD pathoetiology posits it is a degenerative disease affecting primarily the striatum, caused by a gain of function (toxicity) of the mutant mHTT that kills neurons. However, a growing body of evidence supports an alternative theory in which loss of function may also influence the pathology.This theory is predicated on the notion that HTT is known to be a vital gene for brain development. mHTT is expressed throughout life and could conceivably have deleterious effects on brain development. The end event in the disease is, of course, neurodegeneration; however the process by which that occurs may be rooted in the pathophysiology of aberrant development.To date, there have been multiple studies evaluating molecular and cellular mechanisms of abnormal development in HD, as well as studies investigating abnormal brain development in HD animal models. However, direct study of how mHTT could affect neurodevelopment in humans has not been approached until recent years. The current review will focus on the most recent findings of a unique study of children at-risk for HD, the Kids-HD study. This study evaluates brain structure and function in children ages 6-18 years old who are at risk for HD (have a parent or grand-parent with HD).

Keywords

References

  1. J Neurosci. 2014 Jul 9;34(28):9455-72 [PMID: 25009276]
  2. Ann N Y Acad Sci. 2005 May;1049:39-50 [PMID: 15965106]
  3. Brain. 2007 Nov;130(Pt 11):2858-67 [PMID: 17893097]
  4. Trends Neurosci. 2000 Dec;23(12):599-605 [PMID: 11137149]
  5. Neurology. 2020 May 5;94(18):e1908-e1915 [PMID: 32265233]
  6. Mol Neurobiol. 2018 Apr;55(4):3351-3371 [PMID: 28497201]
  7. J Neurosci Res. 2019 Dec;97(12):1624-1635 [PMID: 31353533]
  8. Sci Transl Med. 2018 Sep 12;10(458): [PMID: 30209243]
  9. Proc Natl Acad Sci U S A. 2010 May 4;107(18):8452-6 [PMID: 20404184]
  10. Trends Genet. 2010 Feb;26(2):59-65 [PMID: 20036436]
  11. J Neurol. 2015;262(4):859-69 [PMID: 25626721]
  12. Nat Rev Neurosci. 2005 Dec;6(12):919-30 [PMID: 16288298]
  13. Mol Biol Evol. 2008 Feb;25(2):330-8 [PMID: 18048403]
  14. Mov Disord. 2014 Nov;29(13):1648-54 [PMID: 25123926]
  15. Cell Rep. 2018 Oct 23;25(4):1081-1096.e6 [PMID: 30355486]
  16. J Neurochem. 2007 Feb;100(4):874-82 [PMID: 17217424]
  17. Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14610-5 [PMID: 23898200]
  18. Mol Psychiatry. 2015 Feb;20(1):98-108 [PMID: 25224258]
  19. Neurology. 2012 Mar 6;78(10):690-5 [PMID: 22323755]
  20. Sci Rep. 2019 Dec 10;9(1):18696 [PMID: 31822756]
  21. Neuron. 2017 Jan 4;93(1):99-114 [PMID: 28017473]
  22. PLoS Curr. 2012 Jul 20;4:e4f8606b742ef3 [PMID: 22953238]
  23. Lancet Neurol. 2013 Jul;12(7):637-49 [PMID: 23664844]
  24. Hum Mol Genet. 2005 Oct 1;14(19):2871-80 [PMID: 16115812]
  25. Nucleic Acids Res. 2012 May;40(10):4273-87 [PMID: 22287626]
  26. Lancet Neurol. 2014 Dec;13(12):1193-201 [PMID: 25453459]
  27. J Neurosci Res. 2017 Jan 2;95(1-2):398-408 [PMID: 27870408]
  28. Trends Neurosci. 2008 Jul;31(7):328-34 [PMID: 18550185]
  29. Mol Psychiatry. 2017 Mar;22(3):336-345 [PMID: 28093568]
  30. Lancet Neurol. 2012 Jan;11(1):42-53 [PMID: 22137354]
  31. Trends Biochem Sci. 2006 Sep;31(9):533-40 [PMID: 16829072]
  32. Neurology. 2019 Sep 3;93(10):e1021-e1030 [PMID: 31371571]
  33. Development. 2013 Jan 15;140(2):301-12 [PMID: 23250204]
  34. Proc Natl Acad Sci U S A. 2016 May 17;113(20):5736-41 [PMID: 27140644]
  35. N Engl J Med. 2019 Jun 13;380(24):2307-2316 [PMID: 31059641]
  36. Proc Natl Acad Sci U S A. 2018 Jan 23;115(4):E762-E771 [PMID: 29311338]
  37. Neurobiol Dis. 2013 Feb;50:160-70 [PMID: 23089356]
  38. Hum Mol Genet. 2000 Nov 22;9(19):2799-809 [PMID: 11092756]
  39. PLoS One. 2013 May 14;8(5):e64368 [PMID: 23691206]
  40. JAMA Neurol. 2017 Sep 1;74(9):1088-1096 [PMID: 28672395]
  41. Bioessays. 2007 Jun;29(6):525-35 [PMID: 17508392]
  42. Neuropsychol Rev. 2010 Sep;20(3):261-70 [PMID: 20811947]
  43. Neuroimage Clin. 2020;26:102211 [PMID: 32113174]
  44. Dev Cogn Neurosci. 2018 Oct;33:129-148 [PMID: 29221915]
  45. Psychol Sci. 2012;23(11):1314-23 [PMID: 23012269]
  46. J Neurosci. 2019 Mar 6;39(10):1892-1909 [PMID: 30626701]
  47. Neurobiol Dis. 2016 Dec;96:144-155 [PMID: 27623015]
  48. Brain Res Bull. 2007 Apr 30;72(2-3):152-8 [PMID: 17352939]
  49. Neuron. 2010 Aug 12;67(3):392-406 [PMID: 20696378]
  50. J Neurosci. 2011 Jul 27;31(30):10937-47 [PMID: 21795544]
  51. Hum Mol Genet. 2011 Mar 15;20(6):1049-60 [PMID: 21177255]
  52. Stem Cell Reports. 2020 May 12;14(5):876-891 [PMID: 32302555]
  53. Trends Genet. 2006 May;22(5):253-9 [PMID: 16567018]
  54. Adv Exp Med Biol. 2012;769:10-25 [PMID: 23560302]
  55. Cell Death Differ. 2015 Apr;22(4):690-702 [PMID: 25301063]
  56. Trends Cogn Sci. 2013 May;17(5):241-54 [PMID: 23579055]
  57. Cell Signal. 2017 Jul;35:176-187 [PMID: 28259758]
  58. Neuroimage Clin. 2019;23:101913 [PMID: 31491822]
  59. Science. 2020 Mar 27;367(6485):1428-1429 [PMID: 32217715]
  60. EBioMedicine. 2018 May;31:47-53 [PMID: 29685790]

Grants

  1. R01 NS055903/NINDS NIH HHS
  2. U01 NS055903/NINDS NIH HHS

MeSH Term

Adolescent
Brain
Child
Genetic Predisposition to Disease
Humans
Huntingtin Protein
Huntington Disease
Intelligence
Neurodevelopmental Disorders

Chemicals

HTT protein, human
Huntingtin Protein

Word Cloud

Created with Highcharts 10.0.0HDdevelopmentbrainstudydiseasefunctionmHTTchildrencurrentHowevertheorymaystudiesabnormalrecentyearsriskdogmapathoetiologypositsdegenerativeaffectingprimarilystriatumcausedgaintoxicitymutantkillsneuronsgrowingbodyevidencesupportsalternativelossalsoinfluencepathologyThispredicatednotionHTTknownvitalgeneexpressedthroughoutlifeconceivablydeleteriouseffectsendeventcourseneurodegenerationhoweverprocessoccursrootedpathophysiologyaberrantTodatemultipleevaluatingmolecularcellularmechanismswellinvestigatinganimalmodelsdirectaffectneurodevelopmenthumansapproachedreviewwillfocusfindingsuniqueat-riskKids-HDevaluatesstructureages6-18oldparentgrand-parentNeurodevelopmentalHypothesisHuntington'sDiseaseBrainHuntington’sMRI

Similar Articles

Cited By (27)