Metal-Organic Framework Materials for Perovskite Solar Cells.

Do Yeon Heo, Ha Huu Do, Sang Hyun Ahn, Soo Young Kim
Author Information
  1. Do Yeon Heo: Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea.
  2. Ha Huu Do: School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea.
  3. Sang Hyun Ahn: School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea. ORCID
  4. Soo Young Kim: Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea. ORCID

Abstract

Metal-organic frameworks (MOFs) and MOF-derived materials have been used for several applications, such as hydrogen storage and separation, catalysis, and drug delivery, owing to them having a significantly large surface area and open pore structure. In recent years, MOFs have also been applied to thin-film solar cells, and attractive results have been obtained. In perovskite solar cells (PSCs), the MOF materials are used in the form of an additive for electron and hole transport layers, interlayer, and hybrid perovskite/MOF. MOFs have the potential to be used as a material for obtaining PSCs with high efficiency and stability. In this study, we briefly explain the synthesis of MOFs and the performance of organic and dye-sensitized solar cells with MOFs. Furthermore, we provide a detailed overview on the performance of the most recently reported PSCs using MOFs.

Keywords

References

  1. ACS Appl Mater Interfaces. 2017 Apr 19;9(15):13181-13187 [PMID: 28351131]
  2. Crit Rev Anal Chem. 2019;49(4):336-349 [PMID: 30596249]
  3. RSC Adv. 2018 Mar 5;8(17):9409-9413 [PMID: 35541882]
  4. Adv Mater. 2018 Feb;30(6): [PMID: 29235212]
  5. Adv Mater. 2015 Nov 25;27(44):7229-35 [PMID: 26444686]
  6. ACS Appl Mater Interfaces. 2019 Apr 24;11(16):14862-14870 [PMID: 30933467]
  7. Chem Commun (Camb). 2014 Sep 7;50(69):9869-71 [PMID: 25025947]
  8. Nanoscale Res Lett. 2016 Dec;11(1):266 [PMID: 27216604]
  9. ACS Appl Mater Interfaces. 2019 Nov 27;11(47):44802-44810 [PMID: 31670936]
  10. ACS Nano. 2018 May 22;12(5):4968-4975 [PMID: 29727573]
  11. Phys Chem Chem Phys. 2015 Apr 14;17(14):9369-74 [PMID: 25761519]
  12. Chem Commun (Camb). 2008 Dec 21;(47):6336-8 [PMID: 19048147]
  13. Science. 2016 Oct 14;354(6309):206-209 [PMID: 27708053]
  14. J Am Chem Soc. 2016 Jul 13;138(27):8581-7 [PMID: 27345104]
  15. J Am Chem Soc. 2016 Mar 23;138(11):3884-90 [PMID: 26930494]
  16. Adv Mater. 2014 Jun 11;26(22):3748-54 [PMID: 24634141]
  17. J Am Chem Soc. 2017 Jan 25;139(3):1336-1343 [PMID: 28059503]
  18. Chem Commun (Camb). 2018 Jan 31;54(10):1253-1256 [PMID: 29340377]
  19. Adv Mater. 2018 Jan;30(3): [PMID: 29105851]
  20. Chem Rev. 2017 Aug 9;117(15):10291-10318 [PMID: 28671815]
  21. Phys Chem Chem Phys. 2013 Feb 21;15(7):2572-9 [PMID: 23310946]
  22. Chem Asian J. 2020 Mar 16;15(6):607-623 [PMID: 32017410]
  23. ACS Appl Mater Interfaces. 2016 Aug 31;8(34):22201-12 [PMID: 27494761]
  24. J Am Chem Soc. 2009 May 6;131(17):6050-1 [PMID: 19366264]
  25. Nanoscale. 2014 Dec 21;6(24):14674-8 [PMID: 25373624]
  26. J Phys Chem C Nanomater Interfaces. 2015 Aug 13;119(32):18635-18640 [PMID: 26500712]
  27. Inorg Chem. 2012 Aug 20;51(16):9039-44 [PMID: 22838388]
  28. Adv Mater. 2015 Jan 7;27(1):116-21 [PMID: 25382752]
  29. ACS Omega. 2020 Jan 30;5(5):2280-2286 [PMID: 32064389]
  30. Chem Commun (Camb). 2014 Sep 14;50(71):10210-3 [PMID: 24835675]
  31. Nat Mater. 2017 May 25;16(6):601-602 [PMID: 28541310]
  32. Expert Opin Drug Deliv. 2013 Jan;10(1):89-101 [PMID: 23140545]
  33. Chem Rev. 2014 Jun 11;114(11):5695-727 [PMID: 24750116]
  34. J Am Chem Soc. 2014 Jan 15;136(2):622-5 [PMID: 24359486]
  35. R Soc Open Sci. 2018 May 30;5(5):180335 [PMID: 29892460]
  36. Nanomicro Lett. 2020 Mar 28;12(1):80 [PMID: 34138085]
  37. J Am Chem Soc. 2012 Feb 15;134(6):2864-7 [PMID: 22280024]
  38. J Colloid Interface Sci. 2017 Oct 15;504:570-578 [PMID: 28609740]
  39. Chemphyschem. 2015 Jul 20;16(10):2253-9 [PMID: 25916413]
  40. ACS Omega. 2017 Feb 03;2(2):377-385 [PMID: 31457445]
  41. Chem Sci. 2019 Jan 15;10(7):1904-1935 [PMID: 30881622]
  42. Sci Rep. 2015 Sep 28;5:13211 [PMID: 26411577]
  43. Angew Chem Int Ed Engl. 2016 Dec 19;55(51):15712-15727 [PMID: 27528426]
  44. Adv Mater. 2017 Dec;29(46): [PMID: 29058360]
  45. Sci Rep. 2012;2:591 [PMID: 22912919]
  46. Chem Commun (Camb). 2013 Dec 7;49(94):11089-91 [PMID: 24141601]
  47. Phys Chem Chem Phys. 2016 Nov 30;18(47):32319-32330 [PMID: 27853785]
  48. J Phys Chem Lett. 2016 Apr 7;7(7):1096-101 [PMID: 26942559]
  49. Chem Rev. 2007 Jul;107(7):2891-959 [PMID: 17590053]
  50. ACS Appl Mater Interfaces. 2017 Sep 27;9(38):32413-32417 [PMID: 28872818]
  51. Materials (Basel). 2018 Aug 13;11(8): [PMID: 30104468]
  52. J Phys Chem Lett. 2015 Jan 2;6(1):85-99 [PMID: 26263096]
  53. Adv Mater. 2010 May 25;22(20):E117-30 [PMID: 20641092]
  54. Angew Chem Int Ed Engl. 2019 Dec 2;58(49):17610-17615 [PMID: 31591794]
  55. Science. 2003 May 16;300(5622):1127-9 [PMID: 12750515]
  56. J Am Chem Soc. 2006 Sep 27;128(38):12394-5 [PMID: 16984171]
  57. Nat Commun. 2016 Jun 09;7:11585 [PMID: 27279376]
  58. Adv Mater. 2016 Jul;28(26):5206-13 [PMID: 27147394]
  59. Adv Mater. 2018 Jan;30(3): [PMID: 29205525]
  60. Adv Mater. 2017 Aug;29(29): [PMID: 28561912]
  61. Adv Mater. 2017 May;29(17): [PMID: 28229537]
  62. Chem Sci. 2016 Apr 21;7(4):2633-2638 [PMID: 28660035]
  63. Chemistry. 2018 Jul 11;24(39):9910-9918 [PMID: 29742303]
  64. Chem Rev. 2014 Oct 8;114(19):10095-130 [PMID: 24661129]
  65. Chem Rev. 2019 Mar 13;119(5):3349-3417 [PMID: 30821958]
  66. J Am Chem Soc. 2012 Jul 4;134(26):10953-8 [PMID: 22713119]
  67. Nature. 2018 Nov;563(7729):47-52 [PMID: 30382199]
  68. Adv Mater. 2017 Sep;29(34): [PMID: 28692746]
  69. Nanoscale. 2014 Oct 21;6(20):11995-2001 [PMID: 25177919]
  70. ACS Nano. 2016 Jun 28;10(6):6306-14 [PMID: 27187798]
  71. Nano Lett. 2011 Jun 8;11(6):2311-7 [PMID: 21545165]
  72. Nat Chem. 2014 Mar;6(3):242-7 [PMID: 24557140]
  73. Angew Chem Int Ed Engl. 2008;47(4):677-80 [PMID: 18058972]
  74. Adv Sci (Weinh). 2019 Jan 01;6(5):1801715 [PMID: 30886800]
  75. Adv Mater. 2014 Oct 8;26(37):6503-9 [PMID: 25158905]

Grants

  1. grant number 2018R1A4A1022647/National Research Foundation of Korea
  2. 20IFIP-B133622-04/Ministry of Land, Infrastructure and Transport

Word Cloud

Created with Highcharts 10.0.0MOFssolarcellsusedPSCsframeworksmaterialsperovskiteMOFperformanceMetal-organicMOF-derivedseveralapplicationshydrogenstorageseparationcatalysisdrugdeliveryowingsignificantlylargesurfaceareaopenporestructurerecentyearsalsoappliedthin-filmattractiveresultsobtainedformadditiveelectronholetransportlayersinterlayerhybridperovskite/MOFpotentialmaterialobtaininghighefficiencystabilitystudybrieflyexplainsynthesisorganicdye-sensitizedFurthermoreprovidedetailedoverviewrecentlyreportedusingMetal-OrganicFrameworkMaterialsPerovskiteSolarCellsmetal-organiccell

Similar Articles

Cited By