Melatonin overcomes MCR-mediated colistin resistance in Gram-negative pathogens.

Yuan Liu, Yuqian Jia, Kangni Yang, Ziwen Tong, Jingru Shi, Ruichao Li, Xia Xiao, Wenkai Ren, Rüdiger Hardeland, Russel J Reiter, Zhiqiang Wang
Author Information
  1. Yuan Liu: College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
  2. Yuqian Jia: College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
  3. Kangni Yang: College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
  4. Ziwen Tong: College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
  5. Jingru Shi: College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
  6. Ruichao Li: College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
  7. Xia Xiao: College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
  8. Wenkai Ren: State key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
  9. Rüdiger Hardeland: Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany.
  10. Russel J Reiter: Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, 78229 TX, USA.
  11. Zhiqiang Wang: College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.

Abstract

Emergence, prevalence and widely spread of plasmid-mediated colistin resistance in Enterobacteriaceae strongly impairs the clinical efficacy of colistin against life-threatening bacterial infections. Combinations of antibiotics and FDA-approved non-antibiotic agents represent a promising means to address the widespread emergence of antibiotic-resistant pathogens. Herein, we investigated the synergistic activity between melatonin and antibiotics against MCR (mobilized colistin resistance)-positive Gram-negative pathogens through checkerboard assay and time-killing curve. Molecular mechanisms underlying its mode of action were elucidated. Finally, we assessed the efficacy of melatonin in combination with colistin against drug-resistant Gram-negative bacteria. Melatonin, which has been approved for treating sleep disturbances and circadian disorders, substantially potentiates the activity of three antibiotics, particularly colistin, against MCR-expressing pathogens without enhancing its toxicity. This is evidence that the combination of colistin with melatonin enhances bacterial outer membrane permeability, promotes oxidative damage and inhibits the effect of efflux pumps. In three animal models infected by -carrying , melatonin dramatically rescues colistin efficacy. Our findings revealed that melatonin serves as a promising colistin adjuvant against MCR-positive Gram-negative pathogens.

Keywords

References

  1. J Pineal Res. 2018 May;64(4):e12473 [PMID: 29411894]
  2. Endocrine. 2005 Jul;27(2):119-30 [PMID: 16217125]
  3. Commun Biol. 2020 Apr 3;3(1):162 [PMID: 32246108]
  4. ACS Med Chem Lett. 2019 Apr 17;10(5):828-833 [PMID: 31098007]
  5. Crit Rev Microbiol. 2019 May;45(3):301-314 [PMID: 30985240]
  6. Food Chem. 2017 Apr 15;221:1650-1657 [PMID: 27979142]
  7. Clin Microbiol Rev. 2015 Apr;28(2):337-418 [PMID: 25788514]
  8. J Pineal Res. 2005 May;38(4):217-22 [PMID: 15813897]
  9. Medchemcomm. 2016 Jan 1;7(1):128-131 [PMID: 26877862]
  10. Nat Commun. 2018 Jan 31;9(1):458 [PMID: 29386620]
  11. Langmuir. 2015;31(1):404-12 [PMID: 25489959]
  12. Int J Mol Sci. 2013 Feb 14;14(2):3901-20 [PMID: 23434670]
  13. Cell. 2017 Nov 30;171(6):1354-1367.e20 [PMID: 29103614]
  14. J Infect. 2019 May;78(5):364-372 [PMID: 30851289]
  15. mBio. 2017 Nov 7;8(6): [PMID: 29114023]
  16. Nat Chem Biol. 2011 Jun;7(6):348-50 [PMID: 21516114]
  17. Int J Mol Sci. 2017 Apr 17;18(4): [PMID: 28420185]
  18. ACS Chem Neurosci. 2018 Apr 18;9(4):824-837 [PMID: 29257864]
  19. N Engl J Med. 2010 May 13;362(19):1804-13 [PMID: 20463340]
  20. Nat Commun. 2018 Mar 21;9(1):1179 [PMID: 29563494]
  21. Nat Chem Biol. 2015 Feb;11(2):127-33 [PMID: 25485686]
  22. Nat Rev Microbiol. 2019 Mar;17(3):141-155 [PMID: 30683887]
  23. Theranostics. 2020 Jan 1;10(3):1373-1390 [PMID: 31938070]
  24. J Pineal Res. 2018 Apr;64(3): [PMID: 29363153]
  25. Antimicrob Agents Chemother. 2018 Mar 27;62(4): [PMID: 29339386]
  26. Front Plant Sci. 2016 Feb 19;7:198 [PMID: 26925091]
  27. Inflammopharmacology. 2017 Aug;25(4):403-413 [PMID: 28255737]
  28. Basic Clin Pharmacol Toxicol. 2011 Jan;108(1):14-20 [PMID: 20649556]
  29. J Leukoc Biol. 1994 Feb;55(2):253-8 [PMID: 8301222]
  30. J Pineal Res. 2019 Mar;66(2):e12547 [PMID: 30597604]
  31. J Pineal Res. 2012 Mar;52(2):139-66 [PMID: 22034907]
  32. In Vitro Cell Dev Biol Anim. 2018 Jan;54(1):1-10 [PMID: 29071589]
  33. Cell. 2018 Feb 22;172(5):1136-1136.e1 [PMID: 29474914]
  34. J Biol Chem. 2012 Nov 16;287(47):39742-52 [PMID: 23019319]
  35. Theranostics. 2017 Apr 10;7(7):1795-1805 [PMID: 28638468]
  36. Nat Rev Microbiol. 2015 Jan;13(1):42-51 [PMID: 25435309]
  37. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1824-8 [PMID: 8127888]
  38. ACS Infect Dis. 2019 Jan 11;5(1):123-130 [PMID: 30372023]
  39. Nat Microbiol. 2017 Mar 06;2:17028 [PMID: 28263303]
  40. Antimicrob Agents Chemother. 2011 Sep;55(9):4044-9 [PMID: 21709095]
  41. J Pineal Res. 2008 Mar;44(2):222-6 [PMID: 18289175]
  42. Theranostics. 2019 May 31;9(13):3768-3779 [PMID: 31281512]
  43. Nature. 2017 May 18;545(7654):299-304 [PMID: 28489819]
  44. J Med Chem. 2019 Oct 10;62(19):8665-8681 [PMID: 31063379]
  45. Hypertension. 2004 Feb;43(2):192-7 [PMID: 14732734]
  46. Nat Biotechnol. 2013 May;31(5):415-6 [PMID: 23657395]
  47. Cell Mol Life Sci. 2003 Jan;60(1):6-20 [PMID: 12613655]
  48. Nat Microbiol. 2018 Sep;3(9):1054-1062 [PMID: 30038311]
  49. Trends Microbiol. 2016 Nov;24(11):862-871 [PMID: 27430191]
  50. Nat Rev Microbiol. 2011 Jan;9(1):62-75 [PMID: 21164535]
  51. Cell Chem Biol. 2017 Feb 16;24(2):195-206 [PMID: 28111098]
  52. Pharmacol Ther. 2018 Jan;181:85-90 [PMID: 28750947]
  53. Trends Microbiol. 2018 Sep;26(9):794-808 [PMID: 29525421]
  54. J Pineal Res. 2014 May;56(4):371-81 [PMID: 24654916]
  55. J Antimicrob Chemother. 2017 Jun 1;72(6):1635-1645 [PMID: 28204513]
  56. J Pineal Res. 1995 Apr;18(3):119-26 [PMID: 7562368]
  57. J Pineal Res. 2016 Oct;61(3):253-78 [PMID: 27500468]
  58. Expert Rev Anti Infect Ther. 2012 Aug;10(8):917-34 [PMID: 23030331]
  59. Clin Microbiol Infect. 2012 Jan;18(1):18-29 [PMID: 22168320]
  60. Angew Chem Int Ed Engl. 2017 Feb 1;56(6):1486-1490 [PMID: 28106348]
  61. Nature. 2014 Jun 26;510(7506):503-6 [PMID: 24965651]
  62. Lancet Infect Dis. 2016 Feb;16(2):161-8 [PMID: 26603172]
  63. Drug Discov Today. 2019 Jan;24(1):206-216 [PMID: 30036574]
  64. Nat Prod Rep. 2019 Apr 17;36(4):573-592 [PMID: 30324212]
  65. Prog Neurobiol. 2011 Mar;93(3):350-84 [PMID: 21193011]

MeSH Term

Animals
Anti-Bacterial Agents
Bacterial Outer Membrane
Cell Membrane Permeability
Colistin
Disease Models, Animal
Drug Resistance, Bacterial
Drug Synergism
Drug Therapy, Combination
Escherichia coli
Escherichia coli Infections
Escherichia coli Proteins
Female
Humans
Melatonin
Mice
Microbial Sensitivity Tests
Plasmids

Chemicals

Anti-Bacterial Agents
Escherichia coli Proteins
MCR-1 protein, E coli
Melatonin
Colistin