Primary, Secondary, and Tertiary Effects of Carbohydrate Ingestion During Exercise.

Ian Rollo, Javier T Gonzalez, Cas J Fuchs, Luc J C van Loon, Clyde Williams
Author Information
  1. Ian Rollo: Gatorade Sports Science Institute, PepsiCo Life Sciences, Global R&D, Leicestershire, UK. Ian.rollo@pepsico.com. ORCID
  2. Javier T Gonzalez: Department for Health, University of Bath, Bath, UK.
  3. Cas J Fuchs: Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands.
  4. Luc J C van Loon: Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands.
  5. Clyde Williams: School of Sports Exercise and Health Sciences, Loughborough University, Loughborough, UK.

Abstract

The purpose of this current opinion paper is to describe the journey of ingested carbohydrate from 'mouth to mitochondria' culminating in energy production in skeletal muscles during exercise. This journey is conveniently described as primary, secondary, and tertiary events. The primary stage is detection of ingested carbohydrate by receptors in the oral cavity and on the tongue that activate reward and other centers in the brain leading to insulin secretion. After digestion, the secondary stage is the transport of monosaccharides from the small intestine into the systemic circulation. The passage of these monosaccharides is facilitated by the presence of various transport proteins. The intestinal mucosa has carbohydrate sensors that stimulate the release of two 'incretin' hormones (GIP and GLP-1) whose actions range from the secretion of insulin to appetite regulation. Most of the ingested carbohydrate is taken up by the liver resulting in a transient inhibition of hepatic glucose release in a dose-dependent manner. Nonetheless, the subsequent increased hepatic glucose (and lactate) output can increase exogenous carbohydrate oxidation rates by 40-50%. The recognition and successful distribution of carbohydrate to the brain and skeletal muscles to maintain carbohydrate oxidation as well as prevent hypoglycaemia underpins the mechanisms to improve exercise performance.

References

  1. Nutrients. 2017 Mar 30;9(4): [PMID: 28358334]
  2. Sports Med. 2007;37(9):765-82 [PMID: 17722948]
  3. J Physiol. 2019 Jul;597(14):3549-3560 [PMID: 31166604]
  4. Proc Nutr Soc. 2007 Feb;66(1):96-112 [PMID: 17343776]
  5. FASEB J. 2008 Oct;22(10):3443-9 [PMID: 18653766]
  6. Appetite. 2014 Sep;80:212-9 [PMID: 24858834]
  7. Brain Res. 2010 Sep 2;1350:151-8 [PMID: 20388497]
  8. Int J Sport Nutr Exerc Metab. 2017 Feb;27(1):25-31 [PMID: 27616732]
  9. Am J Physiol Endocrinol Metab. 2018 Nov 1;315(5):E1062-E1074 [PMID: 30106621]
  10. Am J Physiol Endocrinol Metab. 2016 Sep 1;311(3):E543-53 [PMID: 27436612]
  11. J Physiol. 2009 Apr 15;587(Pt 8):1779-94 [PMID: 19237430]
  12. Appetite. 2008 Nov;51(3):622-7 [PMID: 18556090]
  13. J Appl Physiol (1985). 1991 Sep;71(3):1082-8 [PMID: 1757304]
  14. J Appl Physiol (1985). 1992 Feb;72(2):468-75 [PMID: 1559921]
  15. J Appl Physiol (1985). 1986 Jul;61(1):165-72 [PMID: 3525502]
  16. J Clin Invest. 1967 Dec;46(12):1954-62 [PMID: 6074000]
  17. Am J Physiol Gastrointest Liver Physiol. 2000 Jan;278(1):G6-9 [PMID: 10644555]
  18. J Nutr. 1992 Mar;122(3 Suppl):788-95 [PMID: 1542049]
  19. J Sports Sci. 2004 Nov-Dec;22(11-12):1065-71 [PMID: 15801500]
  20. Biochem Biophys Res Commun. 2003 Aug 29;308(3):422-6 [PMID: 12914765]
  21. Physiol Rev. 2013 Jul;93(3):993-1017 [PMID: 23899560]
  22. J Cereb Blood Flow Metab. 2007 Nov;27(11):1766-91 [PMID: 17579656]
  23. News Physiol Sci. 2001 Apr;16:71-6 [PMID: 11390952]
  24. PLoS One. 2011;6(7):e22366 [PMID: 21811592]
  25. Endocrinology. 2012 Sep;153(9):4181-91 [PMID: 22822162]
  26. J Cereb Blood Flow Metab. 2009 Jun;29(6):1121-9 [PMID: 19337275]
  27. Am J Physiol. 1997 Sep;273(3 Pt 1):E543-8 [PMID: 9316444]
  28. Int J Sports Med. 1981 May;2(2):114-8 [PMID: 7333741]
  29. J Sports Sci. 2010 Apr;28(6):593-601 [PMID: 20391081]
  30. Sports Med. 2015 Nov;45(11):1561-76 [PMID: 26373645]
  31. Sports Med. 2013 Nov;43(11):1139-55 [PMID: 23846824]
  32. J Appl Physiol (1985). 1996 Aug;81(2):801-9 [PMID: 8872649]
  33. Nutrients. 2015 Jul 14;7(7):5733-63 [PMID: 26184303]
  34. Eur J Appl Physiol. 2011 Sep;111(9):2381-6 [PMID: 21336838]
  35. Appl Physiol Nutr Metab. 2017 May;42(5):547-557 [PMID: 28177715]
  36. Sports Med. 2000 Jun;29(6):407-24 [PMID: 10870867]
  37. J Nucl Med. 1987 Jul;28(7):1204-7 [PMID: 3598704]
  38. Scand J Med Sci Sports. 2017 Apr;27(4):376-384 [PMID: 27714855]
  39. Gastroenterology. 1983 Jul;85(1):76-82 [PMID: 6852464]
  40. Sports Med. 2019 Jan;49(1):57-66 [PMID: 30488186]
  41. Eur J Appl Physiol Occup Physiol. 1988;57(6):698-706 [PMID: 3416854]
  42. Peptides. 2020 Mar;125:170206 [PMID: 31756367]
  43. Int J Sport Nutr Exerc Metab. 2009 Dec;19(6):645-58 [PMID: 20175432]
  44. Int J Sport Nutr Exerc Metab. 2009 Aug;19(4):400-9 [PMID: 19827464]
  45. Sports Med. 1998 Jan;25(1):7-23 [PMID: 9458524]
  46. Neuroimage. 2005 Jan 15;24(2):363-8 [PMID: 15627579]
  47. Int J Sports Med. 1997 Feb;18(2):125-9 [PMID: 9081269]
  48. J Strength Cond Res. 2017 Jul;31(7):1948-1953 [PMID: 28640772]
  49. Med Sci Sports Exerc. 1999 Mar;31(3):393-9 [PMID: 10188743]
  50. Acta Physiol Scand. 1967 Oct-Nov;71(2):140-50 [PMID: 5584523]
  51. Physiol Rep. 2018 Jan;6(1): [PMID: 29333721]
  52. Med Sci Sports Exerc. 2008 Feb;40(2):275-81 [PMID: 18202575]
  53. Eur J Biochem. 2003 Aug;270(16):3377-88 [PMID: 12899695]
  54. Med Sci Sports Exerc. 2019 Mar;51(3):436-444 [PMID: 30299412]
  55. Am J Clin Nutr. 2005 Nov;82(5):1011-6 [PMID: 16280432]
  56. Compr Physiol. 2014 Apr;4(2):575-620 [PMID: 24715561]
  57. News Physiol Sci. 1998 Dec;13:275-280 [PMID: 11390803]
  58. J Neurochem. 2004 May;89(3):537-52 [PMID: 15086511]
  59. Med Sci Sports Exerc. 1998 Apr;30(4):587-95 [PMID: 9565942]
  60. Sports Med. 2014 Jul;44(7):957-70 [PMID: 24728928]
  61. Int J Sport Nutr Exerc Metab. 2002 Jun;12(2):157-71 [PMID: 12187616]
  62. Cell Metab. 2018 Apr 3;27(4):757-785 [PMID: 29617642]
  63. Clin Sci. 1964 Dec;27:371-9 [PMID: 14236773]
  64. Int J Sport Nutr Exerc Metab. 2006 Oct;16(5):510-27 [PMID: 17240783]
  65. Am J Physiol Endocrinol Metab. 2015 Dec 15;309(12):E1032-9 [PMID: 26487008]
  66. Br J Nutr. 2005 Apr;93(4):485-92 [PMID: 15946410]
  67. J Appl Physiol (1985). 2004 Apr;96(4):1277-84 [PMID: 14657042]
  68. Sports Med. 2011 Jun 1;41(6):449-61 [PMID: 21615187]
  69. Int J Sport Nutr Exerc Metab. 2008 Dec;18(6):585-600 [PMID: 19164829]
  70. Am J Physiol. 1999 Apr;276(4):E672-83 [PMID: 10198303]
  71. J Physiol. 1968 Feb;194(2):317-26 [PMID: 5639356]
  72. J Neurosci. 2010 Oct 20;30(42):13983-91 [PMID: 20962220]
  73. Curr Opin Clin Nutr Metab Care. 2003 Nov;6(6):615-20 [PMID: 14557790]
  74. Br J Sports Med. 1996 Sep;30(3):226-31 [PMID: 8889116]
  75. Prog Neurobiol. 2004 Mar;72(4):223-61 [PMID: 15142684]
  76. Int J Sport Nutr Exerc Metab. 2019 Mar 18;29(4):397–405 [PMID: 30507267]
  77. Appetite. 2000 Dec;35(3):219-29 [PMID: 11073704]
  78. Diabetes. 2000 Jan;49(1):8-12 [PMID: 10615943]
  79. Am J Clin Nutr. 2010 Nov;92(5):1071-9 [PMID: 20826630]
  80. Med Sci Sports Exerc. 2003 Apr;35(4):589-94 [PMID: 12673141]

MeSH Term

Brain
Dietary Carbohydrates
Eating
Exercise
Gastric Inhibitory Polypeptide
Glucagon-Like Peptide 1
Glucose
Humans
Liver
Muscle, Skeletal

Chemicals

Dietary Carbohydrates
Gastric Inhibitory Polypeptide
Glucagon-Like Peptide 1
Glucose

Word Cloud

Created with Highcharts 10.0.0carbohydrateingestedjourneyskeletalmusclesexerciseprimarysecondarystagebraininsulinsecretiontransportmonosaccharidesreleasehepaticglucoseoxidationpurposecurrentopinionpaperdescribe'mouthmitochondria'culminatingenergyproductionconvenientlydescribedtertiaryeventsdetectionreceptorsoralcavitytongueactivaterewardcentersleadingdigestionsmallintestinesystemiccirculationpassagefacilitatedpresencevariousproteinsintestinalmucosasensorsstimulatetwo'incretin'hormonesGIPGLP-1whoseactionsrangeappetiteregulationtakenliverresultingtransientinhibitiondose-dependentmannerNonethelesssubsequentincreasedlactateoutputcanincreaseexogenousrates40-50%recognitionsuccessfuldistributionmaintainwellpreventhypoglycaemiaunderpinsmechanismsimproveperformancePrimarySecondaryTertiaryEffectsCarbohydrateIngestionExercise

Similar Articles

Cited By