CORENup: a combination of convolutional and recurrent deep neural networks for nucleosome positioning identification.

Domenico Amato, Giosue' Lo Bosco, Riccardo Rizzo
Author Information
  1. Domenico Amato: Dipartimento di Matematica e Informatica, Università degli studi di Palermo, Via Archirafi, 34, Palermo, 90123, Italy.
  2. Giosue' Lo Bosco: Dipartimento di Matematica e Informatica, Università degli studi di Palermo, Via Archirafi, 34, Palermo, 90123, Italy. giosue.lobosco@unipa.it. ORCID
  3. Riccardo Rizzo: CNR-ICAR, National Research Council of Italy, Via Ugo La Malfa, 153, Palermo, 90146, Italy.

Abstract

BACKGROUND: Nucleosomes wrap the DNA into the nucleus of the Eukaryote cell and regulate its transcription phase. Several studies indicate that nucleosomes are determined by the combined effects of several factors, including DNA sequence organization. Interestingly, the identification of nucleosomes on a genomic scale has been successfully performed by computational methods using DNA sequence as input data.
RESULTS: In this work, we propose CORENup, a deep learning model for nucleosome identification. CORENup processes a DNA sequence as input using one-hot representation and combines in a parallel fashion a fully convolutional neural network and a recurrent layer. These two parallel levels are devoted to catching both non periodic and periodic DNA string features. A dense layer is devoted to their combination to give a final classification.
CONCLUSIONS: Results computed on public data sets of different organisms show that CORENup is a state of the art methodology for nucleosome positioning identification based on a Deep Neural Network architecture. The comparisons have been carried out using two groups of datasets, currently adopted by the best performing methods, and CORENup has shown top performance both in terms of classification metrics and elapsed computation time.

Keywords

References

  1. Brief Bioinform. 2014 May;15(3):419-30 [PMID: 24197932]
  2. Trends Biochem Sci. 1997 Mar;22(3):93-7 [PMID: 9066259]
  3. BMC Bioinformatics. 2018 Nov 20;19(Suppl 14):418 [PMID: 30453896]
  4. Biopolymers. 1990;30(9-10):861-76 [PMID: 2092816]
  5. J Cell Sci. 2001 Aug;114(Pt 15):2711-2 [PMID: 11683405]
  6. Genomics. 2009 Feb;93(2):140-5 [PMID: 18951969]
  7. Bioinformatics. 2014 Jun 1;30(11):1522-9 [PMID: 24504871]
  8. Curr Opin Genet Dev. 2005 Apr;15(2):185-90 [PMID: 15797201]
  9. Nucleic Acids Res. 2019 Jan 8;47(D1):D163-D169 [PMID: 30335176]
  10. Genomics. 2016 Mar;107(2-3):69-75 [PMID: 26724497]
  11. Cell Biochem Biophys. 2008;51(2-3):67-80 [PMID: 18543113]
  12. EMBO J. 2011 May 4;30(9):1766-77 [PMID: 21448136]
  13. J Mol Biol. 1985 Dec 20;186(4):773-90 [PMID: 3912515]
  14. Nat Struct Mol Biol. 2006 Jul;13(7):633-40 [PMID: 16819518]
  15. Bioinformatics. 2016 Mar 15;32(6):835-42 [PMID: 26576651]
  16. Genome Res. 2015 Aug;25(8):1182-95 [PMID: 26063739]
  17. J Mol Biol. 1986 Oct 20;191(4):659-75 [PMID: 3806678]
  18. Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):E6427-E6436 [PMID: 27698124]
  19. Annu Rev Biochem. 2007;76:75-100 [PMID: 17362198]
  20. Brief Bioinform. 2014 Nov;15(6):1014-27 [PMID: 24023366]
  21. Mol Biosyst. 2016 Jul 19;12(8):2587-93 [PMID: 27271822]
  22. Bioinformatics. 2018 May 15;34(10):1705-1712 [PMID: 29329398]
  23. Bioinformatics. 2018 Oct 15;34(20):3454-3460 [PMID: 30204840]
  24. J Cell Biochem. 1994 May;55(1):83-92 [PMID: 8083303]
  25. Genome Res. 2010 Jan;20(1):90-100 [PMID: 19846608]
  26. BMC Bioinformatics. 2018 Jul 9;19(Suppl 7):198 [PMID: 30066629]
  27. Nature. 2009 Mar 19;458(7236):362-6 [PMID: 19092803]
  28. Biophys J. 2018 May 22;114(10):2279-2289 [PMID: 29628211]

MeSH Term

Genomics
Humans
Neural Networks, Computer
Nucleosomes

Chemicals

Nucleosomes

Word Cloud

Created with Highcharts 10.0.0DNAidentificationCORENupsequenceusingnucleosomeneuralclassificationnetworksnucleosomesmethodsinputdatadeeplearningparallelconvolutionalrecurrentlayertwodevotedperiodiccombinationpositioningDeepBACKGROUND:NucleosomeswrapnucleusEukaryotecellregulatetranscriptionphaseSeveralstudiesindicatedeterminedcombinedeffectsseveralfactorsincludingorganizationInterestinglygenomicscalesuccessfullyperformedcomputationalRESULTS:workproposemodelprocessesone-hotrepresentationcombinesfashionfullynetworklevelscatchingnonstringfeaturesdensegivefinalCONCLUSIONS:ResultscomputedpublicsetsdifferentorganismsshowstateartmethodologybasedNeuralNetworkarchitecturecomparisonscarriedgroupsdatasetscurrentlyadoptedbestperformingshowntopperformancetermsmetricselapsedcomputationtimeCORENup:EpigeneticNucleosomeRecurrent

Similar Articles

Cited By