Adeno-Associated Virus Capsid-Promoter Interactions in the Brain Translate from Rat to the Nonhuman Primate.

Martin O Bohlen, Thomas J McCown, Sara K Powell, Hala G El-Nahal, Tierney Daw, Michele A Basso, Marc A Sommer, R Jude Samulski
Author Information
  1. Martin O Bohlen: Department Biomedical Engineering, Duke University, Durham, North Carolina, USA.
  2. Thomas J McCown: Departments of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
  3. Sara K Powell: UNC Gene Therapy Center, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, USA.
  4. Hala G El-Nahal: Department Biomedical Engineering, Duke University, Durham, North Carolina, USA.
  5. Tierney Daw: Department Biomedical Engineering, Duke University, Durham, North Carolina, USA.
  6. Michele A Basso: Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences and Neurobiology, and Jane and Terry Semel Institute for Neuroscience and Human Behavior, Brain Research Institute-David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.
  7. Marc A Sommer: Department Biomedical Engineering, Duke University, Durham, North Carolina, USA.
  8. R Jude Samulski: UNC Gene Therapy Center, University of North Carolina, School of Medicine, Chapel Hill, North Carolina, USA.

Abstract

Recently, we established an adeno-associated virus (AAV9) capsid-promoter interaction that directly determined cell-specific gene expression across two synthetic promoters, Cbh and CBA, in the rat striatum. These studies not only expand this capsid-promoter interaction to include another promoter in the rat striatum but also establish AAV capsid-promoter interactions in the nonhuman primate brain. When AAV serotype 9 (AAV9) vectors were injected into the rat striatum, the minimal synthetic promoter JetI drove green fluorescent protein (GFP) gene expression predominantly in oligodendrocytes. However, similar to our previous findings, the insertion of six alanines into VP1/VP2 of the AAV9 capsid (AAV9AU) significantly shifted JetI-driven GFP gene expression to neurons. In addition, previous retrograde tracing studies in the nonhuman primate brain also revealed the existence of a capsid-promoter interaction. When rAAV2-Retro vectors were infused into the frontal eye field (FEF) of rhesus macaques, local gene expression was prominent using either the hybrid chicken beta actin (CAG) or human synapsin (hSyn) promoters. However, only the CAG promoter, not the hSyn promoter, led to gene expression in the ipsilateral claustrum and contralateral FEF. Conversely, infusion of rAAV2-retro-hSyn vectors, but not rAAV2-retro-CAG, into the macaque superior colliculus led to differential and selective retrograde gene expression in cerebellotectal afferent cells. Clearly, this differential promoter/capsid expression profile could not be attributed to promoter inactivation from retrograde transport of the rAAV2-Retro vector. In summary, we document the potential for AAV capsid/promoter interactions to impact cell-specific gene expression across species, experimental manipulations, and engineered capsids, independent of capsid permissivity.

Keywords

References

  1. Neuroscience. 1990;36(2):305-24 [PMID: 2215926]
  2. Mol Ther Methods Clin Dev. 2018 Feb 15;9:160-171 [PMID: 29766026]
  3. J Comp Neurol. 1990 Mar 8;293(2):299-330 [PMID: 19189718]
  4. Rev Oculomot Res. 1988;2:365-429 [PMID: 3153653]
  5. Neurosci Lett. 2018 Feb 5;665:182-188 [PMID: 29175632]
  6. Neuron. 2018 Jan 3;97(1):181-194.e6 [PMID: 29301100]
  7. Neurosci Res. 1995 Mar;22(1):57-71 [PMID: 7540742]
  8. Neurosci Res. 2015 Apr;93:144-57 [PMID: 25240284]
  9. Proc Natl Acad Sci U S A. 2019 Dec 23;: [PMID: 31871196]
  10. Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):E1588-E1597 [PMID: 29382765]
  11. J Neurosci. 1997 Dec 1;17(23):9233-47 [PMID: 9364070]
  12. PLoS Pathog. 2015 Aug 05;11(8):e1005082 [PMID: 26244496]
  13. Mol Ther. 2020 May 6;28(5):1373-1380 [PMID: 32213322]
  14. Exp Brain Res. 1986;65(1):200-12 [PMID: 2433144]
  15. J Neurosci Methods. 2020 Nov 1;345:108859 [PMID: 32668316]
  16. Hum Gene Ther. 2017 Nov;28(11):1075-1086 [PMID: 28835125]
  17. Neuron. 2016 Oct 19;92(2):372-382 [PMID: 27720486]
  18. IEEE Trans Biomed Eng. 2008 Jan;55(1):257-66 [PMID: 18232369]
  19. N Engl J Med. 2017 Nov 2;377(18):1713-1722 [PMID: 29091557]
  20. J Virol. 2016 Jul 27;90(16):7196-7204 [PMID: 27252527]
  21. Neuropsychopharmacology. 2015 Aug;40(9):2076-84 [PMID: 25920013]
  22. Sci Rep. 2020 Apr 24;10(1):6970 [PMID: 32332773]
  23. Exp Brain Res. 1982;48(1):1-12 [PMID: 7140880]
  24. Mol Ther. 2002 Oct;6(4):495-500 [PMID: 12377191]
  25. Mol Ther. 2017 Apr 5;25(4):928-934 [PMID: 28202388]
  26. Front Neuroanat. 2019 Sep 18;13:84 [PMID: 31619971]
  27. J Neurophysiol. 2018 Nov 1;120(5):2614-2629 [PMID: 30183470]
  28. Nat Neurosci. 2016 Dec;19(12):1743-1749 [PMID: 27798629]
  29. J Comp Neurol. 1986 Nov 22;253(4):415-39 [PMID: 3793998]
  30. Mol Ther. 2012 Apr;20(4):699-708 [PMID: 22273577]
  31. J Neurosci. 2017 Nov 8;37(45):10894-10903 [PMID: 29118219]
  32. Hum Gene Ther. 2016 Jul;27(7):509-21 [PMID: 27197548]
  33. Neuropsychopharmacology. 2017 May;42(6):1192-1200 [PMID: 27934961]
  34. J Comp Neurol. 1987 Nov 15;265(3):332-61 [PMID: 2447132]
  35. IEEE Trans Biomed Eng. 2015 Sep;62(9):2095-105 [PMID: 25910001]
  36. Neuroscience. 1982 Jul;7(7):1673-89 [PMID: 7121831]
  37. Mol Ther Methods Clin Dev. 2019 Nov 26;17:69-82 [PMID: 31890742]
  38. J Neural Transm (Vienna). 2018 Mar;125(3):547-563 [PMID: 28238201]

Grants

  1. R01 NS116019/NINDS NIH HHS
  2. P30 NS045892/NINDS NIH HHS
  3. R21 EY030278/NEI NIH HHS

MeSH Term

Animals
Brain
Capsid
Dependovirus
Green Fluorescent Proteins
Macaca mulatta
Male
Promoter Regions, Genetic
Rats
Rats, Sprague-Dawley
Transgenes

Chemicals

Green Fluorescent Proteins

Word Cloud

Created with Highcharts 10.0.0expressiongenepromotercapsid-promoterAAVretrogradeAAV9interactionratstriatumnonhumanprimatevectorscapsidcell-specificacrosssyntheticpromotersstudiesalsointeractionsbrainGFPHoweverpreviousrAAV2-RetroFEFCAGhSynleddifferentialRecentlyestablishedadeno-associatedvirusdirectlydeterminedtwoCbhCBAexpandincludeanotherestablishserotype9injectedminimalJetIdrovegreenfluorescentproteinpredominantlyoligodendrocytessimilarfindingsinsertionsixalaninesVP1/VP2AAV9AUsignificantlyshiftedJetI-drivenneuronsadditiontracingrevealedexistenceinfusedfrontaleyefieldrhesusmacaqueslocalprominentusingeitherhybridchickenbetaactinhumansynapsinipsilateralclaustrumcontralateralConverselyinfusionrAAV2-retro-hSynrAAV2-retro-CAGmacaquesuperiorcolliculusselectivecerebellotectalafferentcellsClearlypromoter/capsidprofileattributedinactivationtransportvectorsummarydocumentpotentialcapsid/promoterimpactspeciesexperimentalmanipulationsengineeredcapsidsindependentpermissivityAdeno-AssociatedVirusCapsid-PromoterInteractionsBrainTranslateRatNonhumanPrimate

Similar Articles

Cited By