Artificial Intelligence for COVID-19: Rapid Review.

Jiayang Chen, Kay Choong See
Author Information
  1. Jiayang Chen: Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. ORCID
  2. Kay Choong See: Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. ORCID

Abstract

BACKGROUND: COVID-19 was first discovered in December 2019 and has since evolved into a pandemic.
OBJECTIVE: To address this global health crisis, artificial intelligence (AI) has been deployed at various levels of the health care system. However, AI has both potential benefits and limitations. We therefore conducted a review of AI applications for COVID-19.
METHODS: We performed an extensive search of the PubMed and EMBASE databases for COVID-19-related English-language studies published between December 1, 2019, and March 31, 2020. We supplemented the database search with reference list checks. A thematic analysis and narrative review of AI applications for COVID-19 was conducted.
RESULTS: In total, 11 papers were included for review. AI was applied to COVID-19 in four areas: diagnosis, public health, clinical decision making, and therapeutics. We identified several limitations including insufficient data, omission of multimodal methods of AI-based assessment, delay in realization of benefits, poor internal/external validation, inability to be used by laypersons, inability to be used in resource-poor settings, presence of ethical pitfalls, and presence of legal barriers. AI could potentially be explored in four other areas: surveillance, combination with big data, operation of other core clinical services, and management of patients with COVID-19.
CONCLUSIONS: In view of the continuing increase in the number of cases, and given that multiple waves of infections may occur, there is a need for effective methods to help control the COVID-19 pandemic. Despite its shortcomings, AI holds the potential to greatly augment existing human efforts, which may otherwise be overwhelmed by high patient numbers.

Keywords

References

  1. Nature. 2020 Mar;579(7798):270-273 [PMID: 32015507]
  2. J Med Syst. 2020 Mar 18;44(5):93 [PMID: 32189081]
  3. J Thorac Dis. 2020 Mar;12(3):165-174 [PMID: 32274081]
  4. Ann Intern Med. 2015 Jan 6;162(1):W1-73 [PMID: 25560730]
  5. MMWR Morb Mortal Wkly Rep. 2020 Apr 03;69(13):382-386 [PMID: 32240123]
  6. J Am Med Inform Assoc. 2020 Jul 1;27(9):1450-1455 [PMID: 32531066]
  7. Korean J Radiol. 2020 Apr;21(4):505-508 [PMID: 32174053]
  8. Crit Care. 2020 Apr 22;24(1):167 [PMID: 32321566]
  9. MMWR Morb Mortal Wkly Rep. 2020 Mar 20;69(11):307-311 [PMID: 32191691]
  10. Front Immunol. 2020 Jul 03;11:1581 [PMID: 32719684]
  11. JAMA. 2020 Mar 17;323(11):1061-1069 [PMID: 32031570]
  12. J Thorac Imaging. 2020 May;35(3):W87-W89 [PMID: 32205822]
  13. N Engl J Med. 2020 May 21;382(21):2049-2055 [PMID: 32202722]
  14. Nat Med. 2018 Nov;24(11):1716-1720 [PMID: 30349085]
  15. Circulation. 2015 Nov 17;132(20):1920-30 [PMID: 26572668]
  16. Nat Biomed Eng. 2018 Oct;2(10):719-731 [PMID: 31015651]
  17. Crit Care. 2020 Apr 16;24(1):154 [PMID: 32299472]
  18. Lancet. 2020 Feb 15;395(10223):e30-e31 [PMID: 32032529]
  19. Lancet Digit Health. 2020 Apr;2(4):e201-e208 [PMID: 32309796]
  20. Ann Intern Med. 2019 Jan 1;170(1):W1-W33 [PMID: 30596876]
  21. Radiol Med. 2020 May;125(5):505-508 [PMID: 32350794]
  22. Radiology. 2020 Aug;296(2):E65-E71 [PMID: 32191588]
  23. Nat Med. 2020 Apr;26(4):459-461 [PMID: 32284618]
  24. J Med Syst. 2020 Feb 4;44(3):59 [PMID: 32020374]
  25. AI Soc. 2020;35(3):761-765 [PMID: 32346223]
  26. Comput Biol Med. 2021 Jun;133:104359 [PMID: 33845270]
  27. AJR Am J Roentgenol. 2020 Jun;214(6):1280-1286 [PMID: 32130038]
  28. Clin Radiol. 2019 May;74(5):338-345 [PMID: 30704666]
  29. Diagnostics (Basel). 2020 Apr 01;10(4): [PMID: 32244841]
  30. Eur Rev Med Pharmacol Sci. 2020 Mar;24(6):3400-3403 [PMID: 32271458]
  31. Radiology. 2020 Sep;296(3):E156-E165 [PMID: 32339081]
  32. J Travel Med. 2020 Mar 13;27(2): [PMID: 31943059]
  33. Expert Rev Anti Infect Ther. 2020 Jun;18(6):493-497 [PMID: 32223349]
  34. J Integr Med. 2020 Mar;18(2):152-158 [PMID: 32113846]
  35. Global Health. 2010 Oct 14;6:18 [PMID: 20946643]
  36. BMJ. 2009 Jul 21;339:b2535 [PMID: 19622551]
  37. Sci Rep. 2020 Nov 4;10(1):19012 [PMID: 33149198]
  38. Metabolism. 2017 Apr;69S:S36-S40 [PMID: 28126242]
  39. CMAJ Open. 2020 Feb 18;8(1):E90-E95 [PMID: 32071143]
  40. Mol Inform. 2020 Aug;39(8):e2000028 [PMID: 32162456]
  41. Nature. 2020 Apr;580(7805):578-580 [PMID: 32273621]
  42. Science. 2020 Apr 3;368(6486):9 [PMID: 32241926]
  43. Science. 2014 Mar 14;343(6176):1203-5 [PMID: 24626916]
  44. Lancet. 2020 Mar 14;395(10227):871-877 [PMID: 32087820]
  45. Ann R Coll Surg Engl. 2004 Sep;86(5):334-8 [PMID: 15333167]
  46. Health Aff (Millwood). 2020 Sep;39(9):1624-1632 [PMID: 32663045]
  47. Comput Struct Biotechnol J. 2020 Mar 30;18:784-790 [PMID: 32280433]
  48. Int J Infect Dis. 2020 Jun;95:192-197 [PMID: 32305520]
  49. Radiology. 2020 Aug;296(2):E115-E117 [PMID: 32073353]
  50. Anesthesiology. 2020 Feb;132(2):379-394 [PMID: 31939856]
  51. JMIR Public Health Surveill. 2020 Apr 14;6(2):e18873 [PMID: 32248145]
  52. J Am Med Inform Assoc. 2020 Jun 1;27(6):853-859 [PMID: 32208481]
  53. J Med Internet Res. 2020 Aug 10;22(8):e19104 [PMID: 32584780]

MeSH Term

Artificial Intelligence
Betacoronavirus
COVID-19
Clinical Decision-Making
Coronavirus Infections
Delivery of Health Care
Global Health
Humans
Pandemics
Pneumonia, Viral
Public Health
SARS-CoV-2

Word Cloud

Created with Highcharts 10.0.0COVID-19AIreviewhealthDecember2019pandemicartificialintelligencepotentialbenefitslimitationsconductedapplicationssearchfourareas:clinicaldatamethodsinabilityusedpresencemaylearningBACKGROUND:firstdiscoveredsinceevolvedOBJECTIVE:addressglobalcrisisdeployedvariouslevelscaresystemHoweverthereforeMETHODS:performedextensivePubMedEMBASEdatabasesCOVID-19-relatedEnglish-languagestudiespublished1March312020supplementeddatabasereferencelistchecksthematicanalysisnarrativeRESULTS:total11papersincludedapplieddiagnosispublicdecisionmakingtherapeuticsidentifiedseveralincludinginsufficientomissionmultimodalAI-basedassessmentdelayrealizationpoorinternal/externalvalidationlaypersonsresource-poorsettingsethicalpitfallslegalbarrierspotentiallyexploredsurveillancecombinationbigoperationcoreservicesmanagementpatientsCONCLUSIONS:viewcontinuingincreasenumbercasesgivenmultiplewavesinfectionsoccurneedeffectivehelpcontrolDespiteshortcomingsholdsgreatlyaugmentexistinghumaneffortsotherwiseoverwhelmedhighpatientnumbersArtificialIntelligenceCOVID-19:RapidReviewSARSviruscomputingcoronavirusdeepmachinemedicalinformatics

Similar Articles

Cited By